Loan Repayment Prediction Using XGBoost and Neural Network in Japan's Technical Internship Training

Authors

  • Mohammad Roffi Suhendry Universitas Esa Unggul
  • Gerry Firmansyah Universitas Esa Unggul
  • Nenden Siti Fatonah Universitas Esa Unggul
  • Agung Mulyo Widodo Universitas Esa Unggul

DOI:

10.33395/sinkron.v9i2.14709

Keywords:

Machine Learning, XGBoost, Multi-Layer Perceptron, Late Payment Prediction, Loan Repayment

Abstract

Delayed repayment of financial aid among participants in Japan’s Technical Internship Training Program presents challenges for training institutions in managing funds efficiently. To address this issue, this study aims to compare the performance of two machine learning models: Extreme Gradient Boosting (XGBoost) and Multi-Layer Perceptron (MLP) in predicting the likelihood of delayed loan repayments. The research begins with data preprocessing, including handling missing values, normalization, and feature selection based on a correlation threshold of 0.06, where features with absolute correlation values below this threshold are excluded. Three models are tested: XGBoost Default, XGBoost optimized using GridSearchCV, and MLP. These models are evaluated using performance metrics such as accuracy, precision, recall, F1-score, and ROC-AUC. The XGBoost Default model achieves the highest accuracy at 95% and precision of 95%, although its recall is slightly lower at 83%. Tuning XGBoost improves recall to 84%, albeit with a marginal reduction in accuracy to 94%. In contrast, the MLP model demonstrates the lowest performance, with an accuracy of 92% and recall of 74%, indicating limitations in identifying delayed repayments. XGBoost also outperforms MLP in terms of ROC-AUC, scoring 91% compared to MLP’s 86%. These findings suggest that XGBoost is the more effective model for this predictive task. The results have practical implications for training institutions, enabling better participant selection, reducing repayment delays, and supporting more effective financial aid management.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Arram, A., Ayob, M., Albadr, M. A. A., Sulaiman, A., & Albashish, D. (2023). Credit card score prediction using machine learning models: A new dataset. Retrieved from http://arxiv.org/abs/2310.02956

Chang, V., Sivakulasingam, S., Wang, H., Wong, S. T., Ganatra, M. A., & Luo, J. (2024). Credit Risk Prediction Using Machine Learning and Deep Learning: A Study on Credit Card Customers. Risks, 12(11). https://doi.org/10.3390/risks12110174

Dwi, E., Aini, N., Khasanah, R. A., Ristyawan, A., Diniati, E., Nusantara, U., & Kediri, P. (2024). Penggunaan Data Mining untuk Prediksi tingkat Obesitas di Meksiko Menggunakan Metode Random Forest. In Agustus (Vol. 8). Online.

Guan, C., Suryanto, H., Mahidadia, A., Bain, M., & Compton, P. (2023). Responsible Credit Risk Assessment with Machine Learning and Knowledge Acquisition. Human-Centric Intelligent Systems, 3(3), 232–243. https://doi.org/10.1007/s44230-023-00035-1

He, X., Li, S., He, X. T., Wang, W., Zhang, X., & Wang, B. (2022). A Novel Ensemble Learning Model Combined XGBoost With Deep Neural Network for Credit Scoring. Journal of Information Technology Research, 15(1), 1–18. https://doi.org/10.4018/jitr.299924

Hermann, R. R., & Fauskanger, E. A. (2024). Institutionalizing international internships in business education: an action research approach to overcoming barriers and driving systemic change in Norwegian business schools. Scandinavian Journal of Educational Research. https://doi.org/10.1080/00313831.2024.2369882

JITCO. (n.d.). What is the Technical Intern Training Program? Retrieved December 22, 2024, from https://www.jitco.or.jp website: https://www.jitco.or.jp/en/regulation/

Koc, O., Ugur, O., & Kestel, A. S. (2023). The Impact of Feature Selection and Transformation on Machine Learning Methods in Determining the Credit Scoring. Retrieved from http://arxiv.org/abs/2303.05427

Li, Y., Stasinakis, C., & Yeo, W. M. (2022). A Hybrid XGBoost-MLP Model for Credit Risk Assessment on Digital Supply Chain Finance. Forecasting, 4(1), 184–207. https://doi.org/10.3390/forecast4010011

Maulana, B. A., & Hidayati, N. (2025). Churn Prediction in Credit Customers Using Random Forest and XGBoost Methods. Indonesian Journal of Data and Science, 6(1), 82–90. https://doi.org/10.56705/ijodas.v6i1.215

Nurdin, A., Zunaidi, R. A., Arkan, M., Wicaksono, F., Lobita, A., & Martadinata, J. (2023). ANALISIS KREDIT PEMBAYARAN BIAYA KULIAH DENGAN PENDEKATAN PEMBELAJARAN MESIN. 10(2), 271–280. https://doi.org/10.25126/jtiik.2023106301

Rao, C., Liu, Y., & Goh, M. (2023). Credit risk assessment mechanism of personal auto loan based on PSO-XGBoost Model. Complex and Intelligent Systems, 9(2), 1391–1414. https://doi.org/10.1007/s40747-022-00854-y

Riyadi, T., & Juliane, C. (2024). Antisipasi Persedian Oli Sepeda Motor Wilayah Karawang dengan Menggunakan Pendekatan Knowledge Discovery in Database (KDD)id 2 1,2 Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI Bandung. The Indonesian Journal of Computer Science Www.Ijcs.Net, 13(5). https://doi.org/10.33022/ijcs.v13i5.3992

Sharifi, P., Jain, V., Arab Poshtkohi, M., seyyedi, E., & Aghapour, V. (2021). Banks Credit Risk Prediction with Optimized ANN Based on Improved Owl Search Algorithm. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/8458501

Yulianti, E. H., Soesanto, O., & Sukmawaty, Y. (2022). Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit. JOMTA Journal of Mathematics: Theory and Applications, 4(1).

Downloads


Crossmark Updates

How to Cite

Suhendry, M. R., Gerry Firmansyah, Nenden Siti Fatonah, & Agung Mulyo Widodo. (2025). Loan Repayment Prediction Using XGBoost and Neural Network in Japan’s Technical Internship Training. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(2), 822-831. https://doi.org/10.33395/sinkron.v9i2.14709