Metaheuristic-Optimized SVM for Stunting Risk Detection in Pregnancy

Authors

  • Yudha Wibowo Universitas Esa Unggul
  • Agung Mulyo Widodo Universitas Esa Unggul
  • Gerry Firmansyah Universitas Esa Unggul
  • Budi Tjahjono Universitas Esa Unggul

DOI:

10.33395/sinkron.v9i2.14710

Keywords:

Stunting, SVM, Metaheuristic Optimization, Grey Wolf Optimizer, Simulated Annealing, Firefly Algorithm

Abstract

Stunting is a chronic growth disorder that originates during pregnancy, making early risk detection crucial for effective prevention and long-term child development. This study introduces a stunting risk prediction model based on urine testing, employing a Support Vector Machine (SVM) algorithm enhanced through metaheuristic optimization. Three metaheuristic algorithms—Grey Wolf Optimizer (GWO), Simulated Annealing (SA), and Firefly Algorithm (FA)—were utilized to fine-tune the SVM hyperparameters (C and gamma). Clinical urine samples collected from pregnant women served as the dataset for model training and validation. The results indicate that the SVM model optimized using GWO achieved the highest prediction accuracy at 94.15%, outperforming both the default SVM (88.46%) and the models optimized using SA (94.12%) and FA (85.71%). Additionally, significant improvements were observed in precision, recall, and F1-score metrics, affirming the effectiveness of metaheuristic tuning in enhancing classification performance. These findings highlight the potential of integrating metaheuristic algorithms with SVM for robust medical prediction tasks, especially in the early detection of stunting risks. The proposed model offers a promising and non-invasive diagnostic approach that can be implemented in prenatal care settings, enabling timely interventions to mitigate stunting and improve maternal and child health outcomes.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Agarwal, S., Gupta, M., Agrawal, J., & Le, D.-N. (2022). Swarm Intelligence and Machine Learning. In Swarm Intelligence and Machine Learning. https://doi.org/10.1201/9781003240037

Bincar Robinson Hutasuhut, S. R. (2022). Mencegah Stunting pada 1000 Hari Pertama Kehidupan pada Masyarakat Kelurahan Pasar Merah Barat. JURNAL IMPLEMENTA HUSADA, 3(2). https://doi.org/10.30596/jih.v3i2.11591

Black, R. E., Victora, C. G., Walker, S. P., Bhutta, Z. A., Christian, P., de Onis, M., … Uauy, R. (2013). Maternal and child undernutrition and overweight in low-income and middle-income countries. The Lancet, 382(9890), 427–451. https://doi.org/10.1016/S0140-6736(13)60937-X

Ge, X. (2024). Research on stock trend prediction based on grey wolf optimized RF and SVM models. Highlights in Business, Economics and Management, 34, 215–221. https://doi.org/10.54097/ezm13w73

Liu, M., Luo, K., Zhang, J., & Chen, S. (2021). A stock selection algorithm hybridizing grey wolf optimizer and support vector regression. Expert Systems with Applications, 179, 115078. https://doi.org/10.1016/j.eswa.2021.115078

Mahareek, E. A., Desuky, A. S., & El-Zhni, H. A. (2021). Simulated annealing for svm parameters optimization in student’s performance prediction. Bulletin of Electrical Engineering and Informatics, 10(3), 1211–1219. https://doi.org/10.11591/eei.v10i3.2855

Mus, R., Abbas, M., & Agustina, T. (2022). Skrining Kesehatan Melalui Pemeriksaan Protein Urine di Kompleks Aditarina Kota Makassar. Jurnal Mandala Pengabdian Masyarakat, 3(2), 225–230. https://doi.org/10.35311/jmpm.v3i2.102

Robbani, M. A., Firmansyah, G., & Widodo, A. M. (2024). Clustering of Child Stunting Data in Tangerang Regency Using Comparison of K-Means , Hierarchical Clustering and DBSCAN Methods. 2(2015), 3105–3112.

Scikit-learn. (n.d.). RBF SVM Parameters. Retrieved December 14, 2024, from https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

SHI, W., LIU, J., ZHANG, J., MEN, Y., CHEN, H., WANG, D., & CAO, Y. (2022). Feature Selection and Parameter Optimization of Support Vector Machines Based on a Local Search Based Firefly Algorithm for Classification of Formulas in Traditional Chinese Medicine. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E105.A(5), 2021EAL2075. https://doi.org/10.1587/transfun.2021EAL2075

Simanjutak, I. K. (2023). Analisis Kadar Protein Dan Glukosa Urine Pada Ibu Hamil Di Puskesmas Teladan Medan Tahun 2023 Skripsi. Universitas Medan Area, 3(April), 49–58.

Sutarmi, S., Warijan, W., Indrayana, T., B, D. P. P., & Gunawan, I. (2023). Machine Learning Model For Stunting Prediction. Jurnal Health Sains, 4(9), 10–23. https://doi.org/10.46799/jhs.v4i9.1073

Syarif, I. (2016). Feature Selection of Network Intrusion Data using Genetic Algorithm and Particle Swarm Optimization. EMITTER International Journal of Engineering Technology, 4(2). https://doi.org/10.24003/emitter.v4i2.149

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer.

Wang, F., Xie, K., Han, L., Han, M., & Wang, Z. (2023). Research on support vector machine optimization based on improved quantum genetic algorithm. Quantum Information Processing, 22(10), 380. https://doi.org/10.1007/s11128-023-04139-2

Yesy Afrillia, Fadlisyah, N. A. A. (2025). Classification of Nutritional Status of Pregnant Women at Risk of Stunting in Prospective Babies Using the Support Vector Machine ( SVM ) Algorithm. 6(1). https://doi.org/10.30596/jcositte.v6i1.22393

Downloads


Crossmark Updates

How to Cite

Wibowo, Y. ., Agung Mulyo Widodo, Gerry Firmansyah, & Budi Tjahjono. (2025). Metaheuristic-Optimized SVM for Stunting Risk Detection in Pregnancy. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(2), 841-848. https://doi.org/10.33395/sinkron.v9i2.14710