IoT-Based Stress Monitoring Using CNN for HRV-GSR Analysis
DOI:
10.33395/sinkron.v10i1.15671Abstract
Stress has become a major global health concern affecting both physical and mental well-being. Conventional stress assessment methods rely on subjective self-reports that cannot capture real-time physiological changes. Existing systems are often limited to controlled laboratory environments or depend on traditional machine learning approaches requiring extensive manual feature engineering.
This study aims to develop an Internet of Things–based stress monitoring system using deep learning to enable objective, continuous, and practical real-world stress detection. The system incorporates wearable sensors using an ESP32-DevKit V1 microcontroller, a MAX30102 photoplethysmography sensor, and a Grove-GSR module for real-time acquisition of Heart Rate Variability and Galvanic Skin Response signals. A dual-branch Convolutional Neural Network architecture processes preprocessed HRV and GSR time-series data to automatically learn discriminative features without manual feature engineering. Data were collected from 30 participants, resulting in 8,100 labeled samples across four stress levels. The proposed CNN model achieved 91.3% classification accuracy, outperforming baseline machine learning models such as Support Vector Machine (78.4%), Random Forest (81.7%), and XGBoost (84.3%). Real-time system evaluation demonstrated an average latency of 1.47 seconds and battery endurance exceeding 13 hours, confirming the feasibility of continuous wearable stress monitoring. The integration of IoT infrastructure with deep learning provides an effective framework for physiological stress assessment, offering potential applications in preventive healthcare, workplace health management, and personalized mental-wellness monitoring.
Downloads
References
Abdullah, S. M. S. A., Ameen, S. Y. A., Sadeeq, M. A. M., & Zeebaree, S. (2021). Multimodal emotion recognition using deep learning. Journal of Applied Science and Technology Trends, 2(01), 73–79.
Acharya, U. R., Fujita, H., Oh, S. L., Hagiwara, Y., Tan, J. H., & Adam, M. (2017). Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences, 415, 190–198.
Arsalan, A., Majid, M., Butt, A. R., & Anwar, S. M. (2019). Classification of perceived mental stress using a commercially available EEG headband. IEEE Journal of Biomedical and Health Informatics, 23(6), 2257–2264.
Can, Y. S., Arnrich, B., & Ersoy, C. (2019). Stress detection in daily life scenarios using smart phones and wearable sensors: A survey. Journal of Biomedical Informatics, 92, 103139.
Gia, T. N., Dhaou, I. Ben, Ali, M., Rahmani, A. M., Westerlund, T., Liljeberg, P., & Tenhunen, H. (2019). Energy efficient fog-assisted IoT system for monitoring diabetic patients with cardiovascular disease. Future Generation Computer Systems, 93, 198–211.
Giannakakis, G., Grigoriadis, D., Giannakaki, K., Simantiraki, O., Roniotis, A., & Tsiknakis, M. (2019). Review on psychological stress detection using biosignals. IEEE Transactions on Affective Computing, 13(1), 440–460.
Gjoreski, M., Gjoreski, H., Luštrek, M., & Gams, M. (2016). Continuous stress detection using a wrist device: in laboratory and real life. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, 1185–1193.
Islam, S. M. R., Kwak, D., Kabir, M. D. H., Hossain, M., & Kwak, K.-S. (2015). The internet of things for health care: a comprehensive survey. IEEE Access, 3, 678–708.
Isreal, O., Olorunniwo, O., & Ngahemelwa, J. (2023). Cybersecurity Threats to Programmable IoT Health Devices.
Kamruzzaman, M. M., Yan, B., Sarker, M. N. I., Alruwaili, O., Wu, M., & Alrashdi, I. (2022). Blockchain and Fog Computing in IoT-Driven Healthcare Services for Smart Cities. Journal of Healthcare Engineering, 2022, 1–13. https://doi.org/10.1155/2022/9957888
Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021). 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 151, 107398.
Chakraborty, S., Aich, S., Islam, S., Choi, D., & Kim, H. C. (2019). A multi-platform edge computing framework for detecting acoustic events from moving vehicles in smart city. Proceedings of the 2nd International Conference on Applications of Intelligent Systems, 1–6.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
Narciandi-Rodriguez, D., Aveleira-Mata, J., Garcia-Ordas, M. T., Alfonso-Cendon, J., Benavides, C., & Alaiz-Moreton, H. (2025). A cybersecurity review in IoT 5G networks. Internet of Things, 30, 101478.
Panicker, S. S., & Gayathri, P. (2019). A survey of machine learning techniques in physiology based mental stress detection systems. Biocybernetics and Biomedical Engineering, 39(2), 444–469.
Posada-Quintero, H. F., & Chon, K. H. (2020). Innovations in electrodermal activity data collection and signal processing: A systematic review. Sensors, 20(2), 479.
Rastgoo, N., Nakisa, B., Maire, F., Rakotonirainy, A., & Chandran, V. (2019). Automatic Driver Stress Level Classification Using Multimodal Deep Learning. Expert Systems with Applications, 138. https://doi.org/10.1016/j.eswa.2019.07.010
Ravì, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., & Yang, G.-Z. (2016). Deep learning for health informatics. IEEE Journal of Biomedical and Health Informatics, 21(1), 4–21.
Santamaria-Granados, L., Munoz-Organero, M., Ramirez-Gonzalez, G., Abdulhay, E., & Arunkumar, N. (2018). Using deep convolutional neural network for emotion detection on a physiological signals dataset (AMIGOS). IEEE Access, 7, 57–67.
Schmidt, P., Reiss, A., Duerichen, R., Marberger, C., & Van Laerhoven, K. (2018). Introducing wesad, a multimodal dataset for wearable stress and affect detection. Proceedings of the 20th ACM International Conference on Multimodal Interaction, 400–408.
Schneiderman, N., Ironson, G., & Siegel, S. D. (2005). Stress and health: psychological, behavioral, and biological determinants. Annu. Rev. Clin. Psychol., 1(1), 607–628.
Shen, Q., Wang, H., Xu, W., & Wang, Y. (2019). A deep learning approach for stress detection from photoplethysmography signals. IEEE Sensors Journal, 19(23), 11391–11398. https://doi.org/10.1109/JSEN.2019.2935714
Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 258.
Smets, E., Rios Velazquez, E., Schiavone, G., Chakroun, I., D’Hondt, E., De Raedt, W., Cornelis, J., Janssens, O., Van Hoecke, S., & Claes, S. (2018). Large-scale wearable data reveal digital phenotypes for daily-life stress detection. NPJ Digital Medicine, 1(1), 67.
Tan, J. H., Hagiwara, Y., Pang, W., Lim, I., Oh, S. L., Adam, M., San Tan, R., Chen, M., & Acharya, U. R. (2018). Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Computers in Biology and Medicine, 94, 19–26.
Uddin, M. Z., Khaksar, W., & Torresen, J. (2018a). Ambient sensors for elderly care and independent living: a survey. Sensors, 18(7), 2027.
Uddin, M. Z., Khaksar, W., & Torresen, J. (2018b). Ambient sensors for elderly care and independent living: a survey. Sensors, 18(7), 2027.
Verma, P., & Sood, S. (2018). Fog Assisted-IoT Enabled Patient Health Monitoring in Smart Homes. IEEE Internet of Things Journal, PP, 1. https://doi.org/10.1109/JIOT.2018.2803201
Zubair, M., Kim, J., & Yoon, C. (2016). An Automated ECG Beat Classification System Using Convolutional Neural Networks. https://doi.org/10.1109/ICITCS.2016.7740310
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2026 Yohandres Segono, Elia Yose Mayal Hutagalung, Harly Gumanti Simbolon, Nurul Iman Us, Achmad Ridwan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






















Moraref
PKP Index
Indonesia OneSearch
OCLC Worldcat
Index Copernicus
Scilit
