Comparison of C4.5 & Random Forest Based on AdaBoost For Determining Loan Eligibility Customer Funds

Authors

  • Lenny Universitas Prima Indonesia, Indonesia
  • Violyn Universitas Prima Indonesia, Indonesia
  • Achmad Ridwan Universitas Prima Indonesia, Indonesia
  • Yennimar Universitas Prima Indonesia, Indonesia

DOI:

10.33395/sinkron.v9i1.14499

Keywords:

Data Mining, Decision Tree C4.5, Random Forest, AdaBoost, Eligibility of Loan Funds, Customers

Abstract

This research discusses the comparison between two data mining algorithms, namely Decision Tree C4.5 and Random Forest based on AdaBoost, in determining the creditworthiness of customer funds. The main objective of this research is to evaluate and compare the performance of the two algorithms in predicting loan eligibility based on customer data. Algorithm performance is measured using accuracy, precision, recall, and misclassification error metrics. The research results show that the AdaBoost-based Random Forest is superior with an accuracy of 78.86%, recall of 98.75%, and the lowest misclassification error of 21.14%. Meanwhile, Decision Tree C4.5 provides lower performance than AdaBoost-based Random Forest. This research recommends further exploration of other algorithms, such as Support Vector Machine (SVM) and Neural Networks, to obtain more optimal results in determining customer loan eligibility.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Andi, Juliandy, C., Robet, R., Pribadi, O., & Wijaya, R. (2021). Image Authentication Application with Blockchain to Prevent and Detect Image Plagiarism. 2021 6th International Conference on Informatics and Computing, ICIC 2021, December. https://doi.org/10.1109/ICIC54025.2021.9632966

Ardiyansyah, Sa’adah, R., Lisnawanty, & Purwaningtias, D. (2023). Peningkatan Akurasi Metode C4 . 5 Untuk Memprediksi Kelayakan Kredit Berbasis Stratified Sampling Dan Optimize Selection. Kumpulan Jurnal Ilmu Komputer (KLIK), 10(2), 239–249.

Arnomo, S. A., Fajrin, A. A., Siyamto, Y., Fairuz, S., & Sadikin, N. (2023). Evaluasi Model Decision Tree Pada Keputusan Kelayakan Kredit. Jurnal Desain Dan Aanlisis Teknologi (JDDAT), 2(2), 200–206.

Ghodang, H., & Hantono. (2020). Metode Penelitian Kuantitatif Konsep Dasar & Aplikasi Analisis Regresi Dengan Jalur SPSS. PT. Penerbit Mitra Grup.

Igo, Y. S. R., Aziz, A., & Ahsan, M. (2022). Klasifikasi Kelayakan Pemberian Kredit Nasabah Bank Xyz Menggunakan Metode Algoritma C4.5 Dan Naive Bayes. Kurawal - Jurnal Teknologi, Informasi Dan Industri, 5(1), 57–64. https://doi.org/10.33479/kurawal.v5i1.551

Karrar, A. E. (2022). The Effect of Using Data Pre-Processing by Imputations in Handling Missing Values. Indonesian Journal of Electrical Engineering and Informatics, 10(2), 375–384. https://doi.org/10.52549/ijeei.v10i2.3730

Mulyana, M. A., Religia, Y., & Suwarno, A. (2019). Optimasi Berbasis Particle Swarm Optimization Pada Algoritma Naive Bayes Dalam Memprediksi Penyakit Stroke. Pelita Teknologi: Jurnal Ilmiah Informatika, Arsitektur Dan Lingkungan, 14(1), 1–15.

Pahlevi, O., Amrin, A., & Handrianto, Y. (2023). Implementasi Algoritma Klasifikasi Random Forest Untuk Penilaian Kelayakan Kredit. Jurnal Infortech, 5(1), 71–76. https://doi.org/10.31294/infortech.v5i1.15829

Prasetya, M. R. A., & Priyatno, A. M. (2023). Penanganan Imputasi Missing Values pada Data Time Series dengan Menggunakan Metode Data Mining. Jurnal Informasi Dan Teknologi, 5(2), 56–62. https://doi.org/10.37034/jidt.v5i1.324

Putra, S. M. A. (2024). Prediksi Kredit Macet Menggunakan Algoritma C4.5 Di Bank BRI Wonodadi. Journal Zetroem, 6(1), 10–12. https://doi.org/10.36526/ztr.v6i1.3130

Ramayu, I. M. S., Susanto, F., & Mahendra, G. S. (2022). Penerapan Data Mining Dengan Algoritma C4.5 Dalam Pemesanan Obat Guna Meningkatkan Keuntungan Apotek. Prosiding Seminar Nasional Manajemen, Desain & Aplikasi Bisnis Teknologi (SENADA), 5, 237–245. http://senada.idbbali.ac.id

Sholeh, M., Andayati, D., & Rachmawati, R. Y. (2022). Data Mining Model Klasifikasi Menggunakan Algoritma K-Nearest Neighbor Dengan Normalisasi Untuk Prediksi Penyakit Diabetes. TeIKa, 12(02), 77–87. https://doi.org/10.36342/teika.v12i02.2911

Sholihaningtias, D. N. (2023). Rekomendasi Kelayakan Penerima Kredit Menggunakan Metode TOPSIS dengan Pembobotan ROC. Jurnal SAINTEKOM, 13(1), 88–99. https://doi.org/10.33020/saintekom.v13i1.376

Wibisono, A. B., & Fahrurozi, A. (2019). Perbandingan Algoritma Klasifikasi Dalam Pengklasifikasian Data Penyakit Jantung Koroner. Jurnal Ilmiah Teknologi Dan Rekayasa, 24(3), 161–170. https://doi.org/10.35760/tr.2019.v24i3.2393

Downloads


Crossmark Updates

How to Cite

Lenny, L., Violyn, V., Ridwan, A. ., & Yennimar, Y. (2025). Comparison of C4.5 & Random Forest Based on AdaBoost For Determining Loan Eligibility Customer Funds. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(1), 455-461. https://doi.org/10.33395/sinkron.v9i1.14499