Sentiment Analysis Od Face To Face School Policy On Twitter Social Media With Support Vector Machine(SVM)

Authors

  • Amir Mahmud Husein Universitas Prima Indonesia, Sumatera Utara, Indonesia
  • Berninto Sipahutar Universitas Prima Indonesia, Sumatera Utara, Indonesia
  • Ramonda Dashuah Universitas Prima Indonesia, Sumatera Utara, Indonesia
  • Eben Hutauruk Universitas Prima Indonesia, Sumatera Utara, Indonesia

DOI:

10.33395/sinkron.v8i1.11950

Keywords:

Sentiment Analysis, Machine learning, Twitter Social Media, Support Vector Machine, Face-to-face School.

Abstract

Twitter social media is one way to get fast information, especially related to face-to-face learning system where during covid-19 pandemic learning is held online. In this case government has informed related to the face-to-face learning system as well as the community or students gave an enthusiastic response to the policies provided by the government including giving a good response to these policies and some of them disagreeing with these policies. In this case, the researcher analyzes public opinion on government policies related to face-to-face learning on Twitter social media using the Support Vector Machine algorithm. By doing an analysis related to government policies regarding learning during the COVID-19 pandemic, the government can find out how the public responds and can make decisions. Based on a series of processes that have been carried out previously using the Support Vector Machine method by applying the TF-IDF weighting function, the results can reach 93%. To see the level of accuracy of the proposed method, the researchers made a comparison by applying several other methods. The accuracy results obtained from the support vector machine method are 93%, based on the accuracy obtained, it can be determined that the level of accuracy using the Support Vector Machine method is quite high in classifying sentiment data, but when compared to other methods, namely nave Bayes, which obtains an accuracy of 94%, Logistic Regression which obtained 93% accuracy, and K-NN which obtained 90% accuracy. Thus, the accuracy results of four methods are not too different.

GS Cited Analysis

Downloads

Download data is not yet available.

References

“Netlytic - social media text and social networks analyzer.” https://netlytic.org/ (accessed Jul. 28, 2022).

A. Pratama, R. C. Wihandika, and D. E. Ratnawati, “Implementasi algoritme support vector machine (SVM) untuk prediksi ketepatan waktu kelulusan mahasiswa,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. April, pp. 1704–1708, 2018.

A. Rahman Isnain, A. Indra Sakti, D. Alita, and N. Satya Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm,” Jdmsi, vol. 2, no. 1, pp. 31–37, 2021, [Online]. Available: https://t.co/NfhnfMjtXw

C. A. Cholik, “Perkembangan Teknologi Informasi Komunikasi / ICT Dalam Berbagai Bidang,” 2021.

D. N. Fitriana and Y. Sibaroni, “Klasifikasi Data Tweet dengan Menggunakan Metode Klasifikasi Multi-Class Support Vector Machine (SVM) (Studi Kasus : PT.KAI),” e-Proceeding Eng., vol. 7, no. 2, pp. 8493–8505, 2020, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/a rticle/view/12746

F. F. Irfani, “Analisis Sentimen Review Aplikasi Ruangguru Menggunakan Algoritma Support Vector Machine,” pp. 258–266, 2000.

F. Fitriana, E. Utami, and H. Al Fatta, “Analisis Sentimen Opini Terhadap Vaksin Covid - 19 pada Media Sosial Twitter Menggunakan Support Vector Machine dan Naive Bayes,” J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 19–25, 2021, doi: 10.31603/komtika.v5i1.5185.

H. Setiawan, E. Utami, and S. Sudarmawan, “Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan 19 Naive Bayes,” J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 43–51, 2021, doi: 10.31603/komtika.v5i1.5189.

I. Abbas, “Penerapan Metode Moving Average (MA) Berbasis Algoritma Support Vector Machine (SVM) untuk Membandingkan Pola Kurva dengan Trend Kurva pada Trading Forex Online,” Ilk. J. Ilm., vol. 8, no. 1, pp. 37–43, 2016, doi: 10.33096/ilkom.v8i1.20.37-43.

K. Kelvin, J. Banjarnahor, E. I. -, and M. NK Nababan, “Analisis perbandingan sentimen Corona Virus Disease-2019 (Covid19) pada Twitter Menggunakan Metode Logistic Regression Dan Support Vector Machine (SVM),” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 47–52, 2022, doi: 10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2365.

L. Lusiana, “ANALISIS SENTIMEN TWITTER DENGAN MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM) (Studi Kasus: 3556 Data Tweets dengan Kata Kunci Cadar dan Hijab),” 2018.

L. Q. Zalyhaty, “ANALISIS SENTIMEN TANGGAPAN MASYARAKAT TERHADAP VAKSIN COVID-19 MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM),” 2021.

M. Z. Naf’an, A. Burhanuddin, and A. Riyani, “Penerapan Cosine Similarity dan Pembobotan TF-IDF untuk Mendeteksi Kemiripan Dokumen,” J. Linguist. Komputasional, vol. 2, no. 1, pp. 23–27, 2019.

P. Arsi and R. Waluyo, 2021, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 147, 2021, doi: 10.25126/jtiik.0813944.

P. Studi et al., 2017, “MODEL KOMUNIKASI SOSIAL REMAJA MELALUI MEDIA TWITTER,” no. 52, pp. 539–549.

R. Sulaeman, “Analisis Algoritma Support Vector Machine Dalam Klasifikasi Penyakit Stroke Support Vector Machine Algorithm Analysis In Stroke Disease Classification,” vol. 9, no. 3, pp. 922–928, 2022.

Styawati., N. Hendrastuty, A. R. Isnain, and A. Y. Rahmadhani, “Analisis 20 Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021, [Online]. Available: http://situs.com

Y. Kirelli and S. Arslankaya, “Sentiment Analysis of Shared Tweets on Global Warming on Twitter with Data Mining Methods: A Case Study on Turkish Language,” Comput. Intell. Neurosci., vol. 2020, 2020, doi: 10.1155/2020/1904172.

Downloads


Crossmark Updates

How to Cite

Husein, A. M., Sipahutar, B. ., Dashuah, R., & Hutauruk, E. (2023). Sentiment Analysis Od Face To Face School Policy On Twitter Social Media With Support Vector Machine(SVM). Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(1), 480-486. https://doi.org/10.33395/sinkron.v8i1.11950

Most read articles by the same author(s)

1 2 > >>