Cluster Analysis of Food Social Assistance in DKI Jakarta: K-Means Approach to Identify Expenditure Patterns and Beneficiaries

Authors

  • Nining Suharyanti Universitas Bina Sarana Informatika
  • Rusdiansyah Universitas Bina Sarana Informatika
  • Hendra Supendar Universitas Bina Sarana Informatika
  • Tuslaela Universitas Nusa Mandiri, Indonesia

DOI:

10.33395/sinkron.v8i4.14095

Keywords:

K-Means Algorithm, social assistance, classification, DKI Jakarta,cluster analysis.

Abstract

This study aims to evaluate the effectiveness of the K-Means algorithm in grouping social assistance recipients in DKI Jakarta based on various demographic and economic factors, such as income, number of family members, and living conditions. The main objective of this study is to optimize resource allocation in social assistance programs by identifying different recipient clusters, so that aid distribution becomes more targeted. In this study, the K-Means algorithm was used with an optimal number of clusters of 3, and produced an accuracy rate of 85%, indicating that this algorithm is effective in grouping large-scale and complex data. However, there are challenges related to the sensitivity of K-Means to outliers and data imbalances that affect the results of the analysis. The results also show that areas such as Central Jakarta and South Jakarta receive more social assistance compared to other areas such as North Jakarta and East Jakarta, reflecting differences in needs in various regions. These findings emphasize the importance of selecting the right variables, such as access to health facilities and economic conditions, in producing more accurate groupings. Overall, this study provides valuable insights into efforts to optimize the distribution of social assistance in DKI Jakarta and recommends further research to address the limitations that exist in the use of the K-Means algorithm, especially in the context of data that is imbalanced or has large variations.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Chen & Lin, D. (2020). Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. The Lancet Infectious Diseases, 20(5), 565–574. https://doi.org/10.1016/S1473-3099(20)30196-1

DKI, B. (2024). Jumlah Keluarga Penerima Manfaat (KPM) dan Anggaran Bantuan Sosial Pangan Menurut Provinsi, 2023. DKI Jakarta. https://www.bps.go.id/id/statistics-table/3/TWt0MVNGZFdiV2RaYTFoS1oyRnRSVTFOYUhSc1VUMDkjMw==/jumlah-keluarga-penerima-manfaat--kpm--dan-anggaran-bantuan-sosial-pangan-menurut-provinsi.html?year=2023

Ernawati, F., Efriwati, Nurjanah, N., Aji, G. K., Hapsari Tjandrarini, D., Widodo, Y., Retiaty, F., Prihatini, M., Arifin, A. Y., Sundari, D., Rachmalina, R., Salimar, Julianti, E. D., Aidi, M. N., & Syauqy, A. (2023). Micronutrients and Nutrition Status of School-Aged Children in Indonesia. Journal of Nutrition and Metabolism, 2023. https://doi.org/10.1155/2023/4610038

Huda, M. (2019). Algoritma Data Mining: Analisis Data Dengan Komputer.

Li, N., & Dkk. (2020). Maternal and Neonatal Outcomes of Pregnant Women with Coronavirus Disease 2019 (COVID-19) Pneumonia: A Case-Control Study. Clinical Infectious Diseases, 71(16), 2035–2041. https://doi.org/10.1093/cid/ciaa352

Rayanti dkk. (2021). Health Belief Model dan Management Hipertensi Pada Penderita Hipertensi Primer di Papua. Jurnal Keperawatan Muhammadiyah, 6(1), 19–30. https://doi.org/10.30651/jkm.v6i1.7065

Saraswati, W. (2020). Dampak Faktor Eksternal Terhadap Pertumbuhan Ekonomi Indonesia. EcceS (Economics, Social, and Development Studies), 7(1), 1. https://doi.org/10.24252/ecc.v7i1.13382

Satriatama, A. E., & Dkk. (2023). Analisis Klaster Data Pasien Diabetes untuk Identifikasi Pola dan Karakteristik Pasien. Jurnal Teknologi Dan Sistem Informasi Bisnis, 5(3), 172–182. https://doi.org/10.47233/jteksis.v5i3.828

Tu, Z., Hu, E., Wang, B., David, K. D., Seeger, P., Moneke, M., Stengler, R., Hu, K., & Hu, X. (2020). Tribological behaviors of Ni-modified citric acid carbon quantum dot particles as a green additive in polyethylene glycol. Friction, 8(1), 182–197. https://doi.org/10.1007/s40544-019-0272-8

Wisadirana, D., & Dkk. (2021). Pendayagunaan Kapital Sosial dalam Pemberdayaan Masyaraka. PT. Gramedia.

Wu, K., Su, D., Liu, J., Saha, R., & Wang, J. P. (2019). Magnetic nanoparticles in nanomedicine: A review of recent advances. Nanotechnology, 30(50), 1–95. https://doi.org/10.1088/1361-6528/ab4241

Wu, Y., Zhang, F., Yang, K., Fang, S., Bu, D., Li, H., Sun, L., Hu, H., Gao, K., Wang, W., Zhou, X., Zhao, Y., & Chen, J. (2019). SymMap: An integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Research, 47(D1), D1110–D1117. https://doi.org/10.1093/nar/gky1021

Downloads


Crossmark Updates

How to Cite

Suharyanti , N. ., Rusdiansyah, R., Supendar, H. ., & Tuslaela, T. (2024). Cluster Analysis of Food Social Assistance in DKI Jakarta: K-Means Approach to Identify Expenditure Patterns and Beneficiaries. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2439-2446. https://doi.org/10.33395/sinkron.v8i4.14095