Implementation of the Dual Channel Convolution Neural Network Method for Detecting Rice Plant Diseases
DOI:
10.33395/sinkron.v9i2.14654Keywords:
digital images, rice plant diseases, Dual-Channel Convolutional Neural Network method, Gabor Filter method, Segmentation Based Fractal Co-Occurrence Texture Analysis methodAbstract
Rice is a strategic and important food crop for the economy in Indonesia. Rice can be infected with diseases caused by fungi, bacteria and viruses. The disease that attacks rice plants goes unnoticed by farmers and farmers often do not understand the diseases that attack rice plants so that it is too late in treating them to diagnose the symptoms, causing rice production to decrease. To solve this problem, it is necessary to carry out a disease detection process in rice plants. In this research, the Dual-Channel Convolutional Neural Network (DCCNN) method will be used. This DCCNN method consists of two channels, namely deep channel and shallow channel. The process of detecting grape plant diseases using the DCCNN method will start from the process of extracting leaf parts from the input image using the Gabor Filter method. After that, the Segmentation Based Fractal Co-Occurrence Texture Analysis method will be used to carry out the process of extracting characteristics, color and texture from the extracted leaf parts. Finally, the DCCNN method will be applied to carry out the process of classifying and detecting types of grape plant diseases. The results of this research are that the DCCNN method can be used to detect types of leaf diseases in rice plants. The accuracy of disease detection results using the DCCNN method depends on the number of datasets contained in the system with an accuracy level of up to 85%. However, more datasets will cause the execution process to take longer.
Downloads
References
Alidrus, S. A., Aziz, M., & Putra, O. V. (2021). Deteksi Penyakit Pada Daun Tanaman Padi Menggunakan Metode Convolutional Neural Network. Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), 103-109.
Astutik, Y., Widiyanto, D., & Nugrahaeni P.D, C. (2022). Klasifikasi Jenis Pasir Material Bangunan Menggunakan Metode Support Vector Machine (SVM) Berdasarkan Ekstraksi Ciri Tekstur dan Warna. Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), 889-898.
Farmadi, A., & Muliadi. (2023). Deteksi Penyakit Tanaman Padi Menggunakan Ekstraksi Fitur LBP dan Klasifikasi Modified KNN. Jurnal Komputasi: Ilmu Komputer Unila Publishing Network, 129-137.
Handoko, A. A., Rosid, M. A., & Indahyanti, U. (2024). Implementasi Convolutional Neural Network (CNN) Untuk Pengenalan Tulisan Tangan Aksara Bima. SMATIKA : STIKI Informatika Jurnal, 96-110.
Jauhari, S., & Agrawal , K. K. (2023). Disease Diagnostics in Paddy Fields: A Deep Learning Perspective. Advanced in Artificial Intelligence and Machine Learning, 307-320.
Krisdianto, Sonalitha, E., & Gumilang, Y. S. (2024). Deteksi penyakit padi menggunakan YOLO. Uranus: Jurnal Ilmiah Teknik Elektro, Sains dan Informatika, 125-134.
Linda S.R, K. D., Kusrini, & Hartanto, A. D. (2024). Studi Literatur Mengenai Klasifikasi Citra Kucing Dengan Menggunakan Deep Learning: Convolutional Neural Network (CNN). Journal of Electrical Engineering and Computer (JEECOM), 129-137.
Lismawati, & Isyanto, A. Y. (2021). Faktor-Faktor yang Berpengaruh terhadap Produksi Padi Sawah Irigasi Pedesaan (Studi Kasus di Kecamatan Sadananya Kabupaten Ciamis). Jurnal Hexagro, 5(1), 39-44.
Marantika, W., Gultom, P. R., Agustine, W., Sinuhaji, T. U., & Aisyah, S. (2024). Classification Of Egg Quality Using The K-Nearest Neighbor Algorithm In Machine Learning. JUSIKOM PRIMA (Jurnal Sistem Informasi dan Ilmu Komputer Prima), 153-163.
Nuramyadany, A. C., Nur, I. A., & Rahmah, A. (2023). Persepti Petani Padi Sawah (Oryza sativa) terhadap Metode Tanam Jajar Legowo dan Efisiensi Usaha Tani di Desa Tinggarjaya, Kecamatan Jatilawang, Kabupaten Banyumas. Jurnal Pertanian Peradaban, 13-18.
Nurani, D., Yanuar, I. L., & Putra, A. D. (2022). Klasifikasi Jenis Penyakit pada Citra Daun Padi Menggunakan Algoritma Convolution Neural Network. Jurnal Teknologi Informasi dan Komputer, 198-214.
Purnamawati, A., Nugroho, W., Putri, D., & Hidayat, W. F. (2020). Deteksi Penyakit Daun pada Tanaman Padi Menggunakan Algoritma Decision Tree, Random Forest, Naïve Bayes, SVM dan KNN. InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan, 5(1), 212-215.
Pustika, A., Widyayanti, S., & Supriadi, K. (2023). Blast and Bacterial Diseases of Some Seed-dressed Rice Varieties in Yogyakarta. IOP Conf. Series: Earth and Environmental Science: 5th International Conference on Sustainable Agriculture, 1-10.
Putri, L. S., Arnia, F., & Muharar, R. (2024). Klasifikasi Kanker Payudara Menggunakan Citra Termal Berdasarkan Filter Gabor. Syntax Literate: Jurnal Ilmiah Indonesia, 2623-2639.
Santosa, A. A., Nur Fu’adah, R., & Rizal, S. (2023). Deteksi Penyakit pada Tanaman Padi Menggunakan Pengolahan Citra Digital dengan Metode Convolutional Neural Network. JESCE (Journal of Electrical and System Control Engineering), 98-108.
Telaumbanua, D. B., Ibnutama, K., & Elfitriani. (2025). Penerapan Metode Filter Gabor Untuk Memperbaiki Citra Wajah Berbasis Graphical User Interface (GUI). JURNAL SISTEM INFORMASI TGD, 141-150.
Tobing, D. M., Pawan, E., Neno, F., & Kusrini. (2019). Sistem Pakar Mendeteksi Penyakit Pada Tanaman Padi Menggunakan Metode Forward Chaining. Jurnal Ilmiah SISFOTENIKA, 9(2), 125-136.
Yuantao, C., Jin, W., Xi, C., Sangaiah, A. K., Yang, K., & Zhouhong, C. (2019). Image Super-Resolution Algorithm Based on Dual-Channel Convolutional Neural Networks. Appl. Sci., 9.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2025 Wilson Jauhary, Albert Julius Yaphentus, Yennimar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.