Sentiment Analysis of the Relocation of the National Capital on Social Media X

Authors

  • Yesi Ratna Dewi Institut Bisnis Dan Teknologi Indonesia
  • Ni Wayan Sumartini Saraswati Institut Bisnis Dan Teknologi Indonesia
  • Maria Osmunda Eawea Monny Institut Bisnis Dan Teknologi Indonesia
  • Ida Bagus Gede Sarasvananda Institut Bisnis Dan Teknologi Indonesia
  • I Gede Andika Institut Bisnis Dan Teknologi Indonesia

DOI:

10.33395/sinkron.v9i2.14622

Keywords:

Public Sentiment, Lexicon, Support Vector Machine, Social Media, Sentiment Analysis

Abstract

The relocation of the national capital is a national strategic development project that seeks input from the public. This research analyzes public sentiment towards the relocation of the capital city using the Lexicon SVM method with data from X social media. The analysis was conducted in two languages, namely Indonesian and English, to find out how public opinion on the relocation of Indonesia's capital city at the global level. The sentiment classification results show that in Indonesian, public sentiment tends to be balanced with a model accuracy of 86.79%, where 51.3% is positive sentiment and 48.7% is negative. Meanwhile, in English, positive sentiment is more dominant with a model accuracy of 89.64%, where 83.3% is positive sentiment and 16.7% is negative sentiment. Evaluation using confusion matrix shows that this model provides good results, with high precision, recall, and F1-score values. Visualization using WordCloud and frequency analysis of unigrams, bigrams, and trigrams showed that positive sentiments mostly discussed the development aspects and government policies, while negative sentiments highlighted the social and economic impacts of the relocation. In addition, further analysis shows that public sentiment fluctuates based on important government announcements and major events related to the project. These findings demonstrate the importance of monitoring public opinion over time to understand shifts in perception. This research provides insights to the government and policymakers in understanding public opinion regarding the relocation of the nation's capital. By understanding sentiment patterns, more appropriate policies can be designed to increase public acceptance of the project and address public concerns effectively.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Afifah, D., Aristias, A., Manullang, I. A., Sukma, N. F., & Prasetyo, H. (2024). Kepastian Hukum Terkait Hak-Hak Masyarakat Konservatif Dalam Pembangunan Ibu Kota Nusantara. Jurnal Penelitian Ilmu-Ilmu Sosial, 1(11). https://doi.org/10.5281/zenodo.11658207

Ahmed Khan, T., Sadiq, R., Shahid, Z., Alam, M. M., & Mohd Su’ud, M. (2024). Sentiment Analysis using Support Vector Machine and Random Forest. Journal of Informatics and Web Engineering, 3(1), 67–75. https://doi.org/10.33093/jiwe.2024.3.1.5

Fitriyana, V., Hakim, L., Candra Rini Novitasari, D., Hanif Asyhar, A., Studi Matematika, P., Sains Dan Teknologi, F., Sunan Ampel Surabaya, U., & Timur, J. (2023). Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine. In Jurnal Buana Informatika (Vol. 14, Issue 1).

Harishamzah. (2020). Perbandingan Perhitungan Bobot TF-IDF secara Manual dan Menggunakan Python _ by Harishamzah _ BISA.AI _ Medium. https://medium.com/bisa-ai/perbandingan-perhitungan-bobot-tf-idf-secara-manual-dan-menggunakan-python-377392a165c6

Hendrastuty, N., Rahman Isnain, A., & Yanti Rahmadhani, A. (2021). Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine. 6(3). http://situs.com

Liu, S. (2020). Sentiment Analysis of Yelp Reviews: A Comparison of Techniques and Models. http://arxiv.org/abs/2004.13851

Mahajani, S. J., Srivastava, S., & Smeaton, A. F. (n.d.). A Comparison of Lexicon-Based and ML-Based Sentiment Analysis: Are There Outlier Words?

Manik, G., Ernawati, I., & Nurlaili, I. (2021). Analisis Sentimen Pada Review Pengguna E-Commerce Bidang Pangan Menggunakan Metode Support Vector Machine (Studi Kasus: Review Sayurbox dan Tanihub pada Google Play). In Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA) Jakarta-Indonesia.

Mega Hendarto, Y. (2022). Isu Pemindahan Ibu Kota Negara, dari Perdebatan hingga Pengalihan - Kompas.id. https://www.kompas.id/baca/riset/2022/02/01/isu-pemindahan-ibu-kota-negara-dari-perdebatan-hingga-pengalihan/

Musfiroh, D., Khaira, U., Eko, P., Utomo, P., Suratno, T., Studi, P., Informasi, S., Sains, F., & Teknologi, D. (2021). MALCOM: Indonesian Journal of Machine Learning and Computer Science Sentiment Analysis of Online Lectures in Indonesia from Twitter Dataset Using InSet Lexicon Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon. 1, 24–33.

Nurcahyawati, V., Mustaffa, Z., Raya Kedung Baruk, J., & Persiaran Tun Khalil Yaakob, L. (2023). Vader Lexicon and Support Vector Machine Algorithm to Detect Customer Sentiment Orientation. Journal of Information Systems Engineering and Business Intelligence, 9(1). https://doi.org/10.20473/jisebi.9.1.109-119

Nurdiyansyah, F. , P. F. U. (2023). Analisis sentimen perpindahan ibu kota negara pada aplikasi Tiktok menggunakan metode LSTM.

Nurlaely, R., Sartika Simatupang, D., & Lucia Kharisma, I. (2023). Analisis Sentimen Twitter Terhadap Cyberbullying Menggunakan Metode Support Vector Machine (SVM). 4(2), 376–384. https://doi.org/10.37859/coscitech.v4i2.5161

Prayoga Siswono, A., Fauzi, S., Zalva Surya Hermawan, A., Riyandi, A., Panjaitan No, J. DI, Kidul, P., Purwokerto Selatan, K., & Banyumas, K. (2024). Analisis Sentimen Pelantikan Presiden Indonesia 2024 Menggunakan Model Klasifikasi dan Algoritma Naive Bayes (Vol. 4, Issue 1).

predictivehacks. (2020). How to Run Sentiment Analysis in Python using VADER – Predictive Hacks. https://predictivehacks.com/how-to-run-sentiment-analysis-in-python-using-vader/

Saraswati, M. K., Ariananto, E., Adi, W., Perhubungan, K. S., Sekretariat, U., Ri, K., Hukum, A., Subbidang, S., Iklim, P., Lingkungan, P., & Sekretariat, H. (2022). Pemindahan Ibu Kota Negara Ke Provinsi Kalimantan Timur Berdasarkan Analisis Swot. Jurnal Ilmu Sosial Dan Pendidikan (JISIP), 6(2), 2598–9944. https://doi.org/10.36312/jisip.v6i1.3086/http

Saraswati, N. W. S., Putra, I. K. G. D., Sudarma, M., & Sukarsa, I. M. (2024). Enhance sentiment analysis in big data tourism using hybrid lexicon and active learning support vector machine. Bulletin of Electrical Engineering and Informatics, 13(5), 3663–3674. https://doi.org/10.11591/eei.v13i5.7807

Septiani, D., & Isabela, I. (2022). SINTESIA: Jurnal Sistem dan Teknologi Informasi Indonesia Analisis Term Frequency Inverse Document Frequency (TF-IDF) Dalam Temu Kembali Informasi Pada Dokumen Teks.

Setiawan, H., Utami, E., & Sudarmawan, S. (2021). Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes. Jurnal Komtika (Komputasi Dan Informatika), 5(1), 43–51. https://doi.org/10.31603/komtika.v5i1.5189

Wahba, Y., Madhavji, N., & Steinbacher, J. (n.d.). A Comparison of SVM against Pre-trained Language Models (PLMs) for Text Classification Tasks.

Wahyudi, T., Azmi Verdikha, N., Muhammadiyah Kalimantan Timur, U., Ir Juanda No, J. H., Samarinda Ulu, K., Samarinda, K., & Timur, K. (2024). Klasifikasi Sentimen X-TWITTER Perihal Pemindahan Ibu Kota Indonesia Menggunakan Ekstraksi Fitur TF-IDF Dan Metode Support Vector Machine (SVM). Jurnal Teknologi Informasi, 18(2). https://doi.org/10.47111/JTI

Downloads


Crossmark Updates

How to Cite

Dewi, Y. R., Saraswati, N. W. S. ., Monny, M. O. E. ., Sarasvananda, I. B. G. ., & Andika, I. G. . (2025). Sentiment Analysis of the Relocation of the National Capital on Social Media X. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(2), 625-636. https://doi.org/10.33395/sinkron.v9i2.14622