LDA Topic Modeling: Twitter-Based Public Opinion on Indonesian Ministry of Finance
DOI:
10.33395/sinkron.v9i2.14719Keywords:
kemenkeu, topic modelling, LDA, twitter, preprocessingAbstract
People in the modern era use social media daily to exchange opinions regarding government policies, such as discussions related to the Indonesian Ministry of Finance (Kemenkeu). This study aims to analyze the topics of discussion about the Ministry of Finance on the Twitter platform, now known as 'X', and to determine the results of more effective preprocessing. The data in this study was taken from Twitter using the Tweet Harvest Tool with the keyword 'Ministry of Finance' from January 2024 to July 2024. The data is then processed through cleaning, preprocessing, calculation of coherence values, LDA modeling, and visualization. The preprocessing process includes several scenarios to compare the best results that are easy for the reader to understand. The highest coherence value obtained is 0.572250 by using stemming from NLTK library. The most effective preprocessing results are normalization, tokenization, stopwords, and stemming using Sastrawi. Modeling is done to find latent topics through LDA topic modeling techniques. Visualizing the intertopic distance map provides information on the distance between each topic. The results show that the distance between one topic and another has a variety of distance variations. This study shows that social media platforms can serve as a source of evaluation for the Indonesian government. The findings of these topics are helpful as insights for readers and the Kemenkeu. Finally, the analysis identified several key topics in public discussion, including fiscal policy, budget transparency, and the Ministry of Finance's performance in addressing current economic issues.
Downloads
References
Abidin, Z., Junaidi, A., & Wamiliana. (2024). Text Stemming and Lemmatization of Regional Languages in Indonesia: A Systematic Literature Review. Journal of Information Systems Engineering and Business Intelligence, 10(2), 217–231. https://doi.org/10.20473/jisebi.10.2.217-231
Adhikari, S. (2022). Social Media and its Impacts in Human Minds. Unity Journal, 3(01), 317–330. https://doi.org/10.3126/unityj.v3i01.43335
Alif Nur Iman, S. (2024). PENGARUH TREND PLATFORM DIGITAL SEBAGAI EDUKASI POLITIK TERHADAP PENINGKATAN PARTISIPASI POLITIK MASYARAKAT DI KOTA SURABAYA TAHUN 2023. Journal of Comprehensive Science, 3(1), 37–48.
Asmussen, C. B., & Møller, C. (2019). Smart literature review: a practical topic modelling approach to exploratory literature review. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0255-7
Blei, D. M., Ng, A. Y., & Jordan, M. T. (2002). Latent dirichlet allocation. Advances in Neural Information Processing Systems, 3, 993–1022.
Boulianne, S., Hoffmann, C. P., & Bossetta, M. (2024). Social media platforms for politics: A comparison of Facebook, Instagram, Twitter, YouTube, Reddit, Snapchat, and WhatsApp. In New Media and Society (Nomor July). https://doi.org/10.1177/14614448241262415
Erlisya, V., Aulia, A., Tobing, N. B., Saputra, B., Raja, M., Haji, A., & Korespondensi, T. (2024). Analisis Penyalahgunaan Kekuasaan dari Pejabat Kemenkeu yang Dilakukan oleh Rafael Alun Trisambodo. Analisis Penyalahgunaan Kekuasaan (Erlisya, dkk.) Madani: Jurnal Ilmiah Multidisiplin, 2(5), 298–302. https://doi.org/10.5281/zenodo.11422692
Fan, C., Chen, M., Wang, X., Wang, J., & Huang, B. (2021). A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Frontiers in Energy Research, 9(March), 1–17. https://doi.org/10.3389/fenrg.2021.652801
Finansyah, A. Y. W., Afiahayati, F., & Sutanto, V. M. (2022). Performance Comparison of Similarity Measure Algorithm as Data Preprocessing Stage: Text Normalization in Bahasa. Scientific Journal of Informatics, 9(1), 1–7. https://doi.org/10.15294/sji.v9i1.30052
Habibi, P. W. C. and M. (2020). Entity Profiling to Identify Actor Involvement in Topics of Social Media Content. IJCCS Indones. J. Comput. Cybern. Syst., 14. https://doi.org/10.22146/ijccs.59869
Kang, H. J., Kim, C., & Kang, K. (2019). Analysis of the trends in biochemical research using latent dirichlet allocation (LDA). Processes, 7(6), 1–14. https://doi.org/10.3390/PR7060379
Keuangan, M. (n.d.). Organisasi dan Tata Kerja Kementerian Keuangan. https://jdih.kemenkeu.go.id/in/dokumen/peraturan/c1
Lee, J., Kim, H., & Kron, F. (2024). Virtual education strategies in the context of sustainable health care and medical education: A topic modelling analysis of four decades of research. Medical Education, 58(1), 47–62. https://doi.org/10.1111/medu.15202
Lubis, A. R., Prayudani, S., Lubis, M., & Nugroho, O. (2022). Sentiment Analysis on Online Learning during the Covid-19 Pandemic Based on Opinions on Twitter using KNN Method. 2022 1st International Conference on Information System and Information Technology, ICISIT 2022, July, 106–111. https://doi.org/10.1109/ICISIT54091.2022.9872926
Muzumdar, P., Kurian, G., & Basyal, G. P. (2024). A Latent Dirichlet Allocation (LDA) Semantic Text Analytics Approach to Explore Topical Features in Charity Crowdfunding Campaigns. Asian Journal of Economics, Business and Accounting, 24(1), 1–10. https://doi.org/10.9734/ajeba/2024/v24i11207
Novira, S. T. (2019). Sistem Pendukung Keputusan Pemilihan Jurusan Sekolah Menengah Kejuruan Dengan Menggunakan Metode Analytical Hierarchy …. 2015, 186–188. http://repositori.unsil.ac.id/782/
Nurmalasari, S., Hidayanto, A. N., Huwaida, L. A., & Wulandari, H. (2023). Sentiment Analysis and Topic Modeling of Citizen Satisfaction with the Indonesian Government in Handling a Pandemic. OPSearch: American Journal of Open Research, 2(7), 246–256. https://doi.org/10.58811/opsearch.v2i6.61
Parveen, N., Santhi, M. V. B. T., Ramani Burra, L., Pellakuri, V., & Pellakuri, H. (2021). WITHDRAWN: Women’s e-commerce clothing sentiment analysis by probabilistic model LDA using R-SPARK. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.10.064
Rabbani, H. A. (n.d.). Sastrawi 1.0.1.
Rinandyaswara, R., Sari, Y. A., & Furqon, M. T. (2022). Pembentukan Daftar Stopword Menggunakan Term Based Random Sampling Pada Analisis Sentimen Dengan Metode Naïve Bayes (Studi Kasus: Kuliah Daring Di Masa Pandemi). Jurnal Teknologi Informasi dan Ilmu Komputer, 9(4), 717. https://doi.org/10.25126/jtiik.2022934707
Rivaldy, A., Fedria Wowor, H. A., Maisya, S. R., & Safitri, D. (2021). Penggunaan Twitter Dalam Meningkatkan Melek Politik Mahasiswa Ilmu Komunikasi Universitas Negeri Jakarta. Perspektif Komunikasi: Jurnal Ilmu Komunikasi Politik dan Komunikasi Bisnis, 5(1), 41. https://doi.org/10.24853/pk.5.1.41-48
Sahria, Y., & Hatta Fudholi, D. (2017). Analisis Topik Penelitian Kesehatan di Indonesia Menggunakan Metode Topic Modeling LDA (Latent Dirichlet Allocation). Masa Berlaku Mulai, 1(3), 336–344.
Sakti, R. E., & Nainggolan, B. (2023). Understanding the Role of Social Media Toward Satisfaction of Government in Indonesia. Jurnal Komunikasi Indonesia, 12(1). https://doi.org/10.7454/jkmi.v12i1.1185
Sonk, M., & Tunger, D. (2024). Trend mining with Orange – using topic modeling in futures research with the example of urban mobility. European Journal of Futures Research, 12(1), 1–7. https://doi.org/10.1186/s40309-024-00229-1
Studies, L. (2024). The Effect Of Political Influencer On Online Political Participation In Twitter/X. 6(2).
Tan, X., Zhuang, M., Lu, X., & Mao, T. (2021). An Analysis of the Emotional Evolution of Large-Scale Internet Public Opinion Events Based on the BERT-LDA Hybrid Model. IEEE Access, 9, 15860–15871. https://doi.org/10.1109/ACCESS.2021.3052566
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2025 Dina Choirinnisa, Farrikh Alzami, Heni Indrayani, Asih Rohmani, Siti Hadiati Nugraini, Rahmawati Zulfiningrumi, Fitri Susanti

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.