Explainable Machine Learning-Based Decision Tree Model for Early Detection of Hypertension Risk
DOI:
10.33395/sinkron.v10i1.15585Keywords:
hypertension, explainable AI, decision tree, early detection, machine learning, digital healthAbstract
Hypertension is one of the leading causes of cardiovascular disease and is often referred to as a “silent killer” because it typically remains asymptomatic until serious complications, such as stroke or kidney failure, occur. Early detection of hypertension risk is therefore essential to enable timely intervention and prevention. This study aims to develop an explainable machine learning–based Decision Tree model for early detection of hypertension risk using clinical and lifestyle data. The balanced dataset includes variables such as age, body mass index (BMI), blood pressure, family history, smoking habits, stress levels, and sleep duration. The dataset used in this study was obtained from the “Hypertension Risk Prediction Dataset” available on the Kaggle platform, consisting of 1,985 patient records and 11 main features covering variables such as age, body mass index (BMI), systolic and diastolic blood pressure, family history, smoking habits, stress level, physical activity, and sleep duration. The dataset is balanced between the hypertension and normal categories, enhancing the reliability of the classification results. The model was constructed using a Decision Tree Classifier implemented in Scikit-learn and validated through cross-validation to minimize overfitting. Model performance was assessed using accuracy, precision, recall, F1-score, and AUC-ROC metrics. The results indicate that the model achieved an accuracy of 96% and an AUC of 0.9645, demonstrating excellent classification performance. The motivation behind this research lies in the growing need for interpretable artificial intelligence models in healthcare, where transparency and explainability are critical for clinical trust and ethical decision-making. Unlike black-box models, the Decision Tree approach allows clinicians to trace each prediction path, understand contributing variables, and apply insights in real-world medical settings. The primary advantage of this model lies in its transparency, as each prediction can be interpreted through explicit decision rules. Overall, this explainable and high-performing model shows strong potential as a clinical decision support tool for early hypertension screening and prevention programs.
Downloads
References
Afolabi, S., Ajadi, N., Jimoh, A., & Adenekan, I. (2025). Predicting diabetes using supervised machine learning algorithms on E-health records. Informatics and Health, 2(1), 9–16. https://doi.org/10.1016/j.infoh.2024.12.002
Ahmed. (2023). Predicting hypertension risk using decision tree classification and feature importance analysis.
Alzami, F., Udayanti, E. D., Prabowo, D. P., & Megantara, R. A. (2020). Document Preprocessing with TF-IDF to Improve the Polarity Classification Performance of Unstructured Sentiment Analysis. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 235–242. https://doi.org/10.22219/kinetik.v5i3.1066
Arista, Y., Sulistianingsih, N., Fitrisia, T., & Febriyanzi, Z. D. (2025). Prediksi Gagal Jantung: Pendekatan Data Mining untuk Deteksi dan Penilaian Risiko. In Technology, Health, and Agriculture Nexus: Conference Series (Vol. 1, Issue 1, pp. 48–57). https://journal.ummat.ac.id/index.php/tcs
Ary Prandika Siregar, Dwi Priyadi Purba, Jojor Putri Pasaribu, & Khairul Reza Bakara. (2023). Implementasi Algoritma Random Forest Dalam Klasifikasi Diagnosis Penyakit Stroke. Jurnal Penelitian Rumpun Ilmu Teknik, 2(4), 155–164. https://doi.org/10.55606/juprit.v2i4.3039
Buani, D. C. P. (2025). Penerapan Decision Tree Untuk Klasifikasi Gangguan Tidur Dengan Hyperparameter Tuning Dan Smote. JUSIM (Jurnal Sistem Informasi Musirawas), 10(1), 65–74. http://jurnal.univbinainsan.ac.id/index.php/jusim/article/view/2538
Elnaz Putri, H. Z., & Fahmi, H. (2024). Implementasi Metode Support Vector Machine pada Klasifikasi Diagnosis Penyakit Hipertensi. In Jurnal Riset Mahasiswa Matematika (Vol. 3, Issue 5). etheses.uin-malang.ac.id. https://doi.org/10.18860/jrmm.v3i5.27312
Hana, F. M. (2020). Klasifikasi Penderita Penyakit Diabetes Menggunakan Algoritma Decision Tree C4.5. Jurnal SISKOM-KB (Sistem Komputer Dan Kecerdasan Buatan), 4(1), 32–39. https://doi.org/10.47970/siskom-kb.v4i1.173
Hendrawan, K. A., Rizki, A., Sinaga, D. K., & Ruswansuwarman, H. (2024). Prediksi Gagal Jantung Berbasis Machine learning Menggunakan Support Vector Machine dan Regresi Logistik. Seminar Nasional Corisindo, 436–441. https://corisindo.utb-univ.ac.id/index.php/penelitian/article/view/155
Karima, C., & Anggraeni, W. (2024). Performance Analysis of the Ada-Boost Algorithm For Classification of Hypertension Risk With Clinical Imbalanced Dataset. Procedia Computer Science, 234, 645–653. https://doi.org/10.1016/j.procs.2024.03.050
Kumar, V., Ahire, J. J., & Taneja, N. K. (2024). Advancing microbial food safety and hazard analysis through predictive mathematical modeling. The Microbe, 2, 100049. https://doi.org/10.1016/j.microb.2024.100049
Kurniawan, R., Utomo, B., Siregar, K. N., Ramli, K., Besral, Suhatril, R. J., & Pratiwi, O. A. (2023). Hypertension prediction using machine learning algorithm among Indonesian adults. IAES International Journal of Artificial Intelligence, 12(2), 776–784. https://doi.org/10.11591/ijai.v12.i2.pp776-784
Nopebrian, A. A., Shofa, R. N., & Siti, Y. (2025). Perbandingan Algoritma Pendekatan Supervised LearningMenggunakan Seleksi Fitur Chi-Square untuk Klasifikasi StatusKesehatan Jemaah Haji. Jurnal Sistem Dan Teknologi Informasi (JUSTIN), 13(1), 1–7. https://jurnal.untan.ac.id/index.php/justin/article/view/86639
Olang. (2022). Prediksi Perubahan Status Neurologi Pasien Cerebrovascular Disease. eprints.unkaha.ac.id. http://eprints.unkaha.ac.id/616/1/2010020 Janwar Olang Pembibing Pak Eko Winarno%2C Bu Yunani Prediksi Perubahan Status Neurologi Pasien Cerebrovascular Disease Hemorrhagic - Non Hemorrhagic Menggunakan Siraraj Stroke Score. %283%29.pdf
Ongkosianbhadra, F. V., & Lestari, C. C. (2023). Pengembangan Model Prediksi Risiko Hipertensi Menggunakan Algoritma Gradient Boosting Decision Tree Yang Dioptimalkan. Jurnal Informatika Dan Sistem Informasi, 9(2), 90–99. https://doi.org/10.37715/juisi.v9i2.4403
Purwono, P., Dewi, P., Wibisono, S. K., & Dewa, B. P. (2022). Model Prediksi Otomatis Jenis Penyakit Hipertensi dengan Pemanfaatan Algoritma Machine Learning Artificial Neural Network. Insect (Informatics and Security): Jurnal Teknik Informatika, 7(2), 82–90. https://doi.org/10.33506/insect.v7i2.1828
Putra, M. R. A., & Rissa Nurfitriana Handayani. (2024). Perbandingan Algoritma Decision Tree dan Random Forest Dalam Pengklasifikasian Penyakit Tiroid. E-Prosiding Sistem Informasi, 5(2), 166–172. https://santika.upnjatim.ac.id/submissions/index.php/santika/article/view/349
Ridla, M. A., & Bawazin, A. A. (2025). Klasifikasi Gangguan Tidur Berdasarkan Gaya Hidup Menggunakan Algoritma Decision Tree. Journal of Information System and …. https://jurnal.unmer.ac.id/index.php/jisad/article/view/16038
Sofyan, F. M. A., Riyandoro, A. P., Maulana, D. F., & Jaman, J. H. (2023). Penerapan Data Mining dengan Algoritma C5.0 Untuk Prediksi Penyakit Stroke. In J-SISKO TECH (Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD) (Vol. 6, Issue 2, p. 619). https://doi.org/10.53513/jsk.v6i2.8578
Wahyudin, W. C., Sutikno, T., Umar, R., & Ridwan, A. (2025). Comparison of Data Mining Model Performance in Heart Disease Detection with Feature Selection Application. JOINCS (Journal of Informatics, Network, and Computer Science), 8(1), 87–93. https://doi.org/10.21070/joincs.v8i1.1669
WHO. (2022). World Health Statistics 2022. World Health, 1-177. 131.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2026 Hilda Ayu Sofiani, Isa Iant Maulana, Farrikh Alzami, Muhammad Naufal, Harun Al Azies, Ifan Rizqa, Dewi Agustini Santoso, Siti Hadiati Nugraini

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Moraref
PKP Index
Indonesia OneSearch
OCLC Worldcat
Index Copernicus
Scilit




















