MCDM-based Fire Risk Mapping with Geospatial Visualization and Blockchain

Authors

  • Emmanuel Abet Rossi Paays Informatika, Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional, Indonesia
  • Djarot Hindarto Informatika, Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional, Indonesia
  • Asrul Sani Magister Teknologi Informasi, Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional, Indonesia

DOI:

10.33395/sinkron.v9i4.15436

Keywords:

AHP, Blockchain, Forest Fires, GIS, MCDM

Abstract

Forest fires are among the most destructive environmental disasters in Indonesia, causing long-term ecological damage, health problems, and economic disruption. Increasing occurrences driven by climate anomalies, land clearing, and vegetation dryness highlight the need for intelligent and data-driven risk monitoring systems. This study introduces a hybrid analytical framework that integrates Multi-Criteria Decision-Making (MCDM) with blockchain-based data management and geospatial visualization to identify forest fire risk levels. The proposed model combines the Analytic Hierarchy Process (AHP), Weighted Sum Model (WSM), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to evaluate multiple parameters, including temperature, humidity, rainfall, and the Normalized Difference Vegetation Index (NDVI). Environmental data were securely obtained from a private Ethereum blockchain using Ganache, Truffle, and MetaMask to ensure transparency, integrity, and immutability. Results were visualized through an interactive Leaflet.js interface, allowing real-time geospatial monitoring linked to blockchain transaction hashes. The AHP analysis revealed that temperature (0.36) and humidity (0.27) contributed 63% of the total decision weight, while TOPSIS identified high-risk zones consistent with historical records. Validation against BNPB data achieved 90.7% accuracy, confirming the model’s reliability. The integration of MCDM, GIS, and blockchain provides a transparent, decentralized, and verifiable approach for national-scale fire-risk management, enhancing the accuracy and credibility of environmental decision-making systems.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Abedi, R. (2022). International Journal of Geoheritage and Parks Application of multi-criteria decision making models to forest fi re management. International Journal of Geoheritage and Parks, 10(1), 84–96. https://doi.org/10.1016/j.ijgeop.2022.02.005

Barmpoutis, P., Papaioannou, P., Dimitropoulos, K., & Grammalidis, N. (2020). A Review on Early Forest Fire Detection Systems Using Optical Remote Sensing. https://doi.org/10.3390/s20226442

Bauˇ, M. (2020). Household Level Vulnerability Analysis — Index and Fuzzy Based Methods. https://doi.org/10.3390/ijgi9040263

Cartwright, W., Crampton, J., Gartner, G., Miller, S., Mitchell, K., & Siekierska, E. (2001). G e o s p a t i a l I n f or m a t i o n V i s u a l i z a t i o n U s e r I n t e r f a c e I s s u e s. September 2014. https://doi.org/10.1559/152304001782173961

Ding, J., Yan, Z., & We, X. (2021). High-Accuracy Recognition and Localization of Moving Targets in an Indoor Environment Using Binocular Stereo Vision. https://doi.org/10.3390/ijgi10040234

Gupta, Y. Sen, Mukherjee, S., Dutta, R., & Bhattacharya, S. (2021). A blockchain ‑ based approach using smart contracts to develop a smart waste management system. International Journal of Environmental Science and Technology, November. https://doi.org/10.1007/s13762-021-03507-8

Hindarto, D. (2023). Blockchain-Based Academic Identity and Transcript Management in University Enterprise Architecture. 7(4), 2547–2559. https://doi.org/10.33395/sinkron.v8i4.12978

Hindarto, D. (2025a). A Blockchain-based Landslide Mitigation Recommendation System for Decision-Making. 15(1), 20452–20460. https://doi.org/10.48084/etasr.9806

Hindarto, D. (2025b). Blockchain and MCDM Framework for Secure Geospatial Data in Landslide Risk Mitigation. 18(4), 137–155. https://doi.org/10.22266/ijies2025.0531.09

Hindarto, D., Alim, S., Hendrata, F., Informatika, P., Nasional, U., Studi, P., Informatika, T., Teknik, F., Surabaya, U. B., Informasi, P. S., & Narotama, U. (2024). Uncovering Blockchain ’ s Potential for Supply Chain Transparency : Qualitative Study on the Fashion Industry. 8(2), 1107–1115. https://doi.org/10.33395/sinkron.v8i2.13590

Hindarto, D., & Hariadi, M. (2025). A Crypto-Spatial Framework for Landslide Susceptibility Assessment and Decision-Making. 10. https://doi.org/10.55267/iadt

Hindarto, D., & Indrajit, R. E. (2023). Digital Transformation in University : Enterprise Architecture and Blockchain Technology. 7(4), 2501–2512. https://doi.org/10.33395/sinkron.v8i4.12977

Mardani, A., Jusoh, A., Nor, K., Khalifah, Z., & Valipour, A. (2015). Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014. Economic Research-Ekonomska Istraživanja, 28(1), 516–571. https://doi.org/10.1080/1331677X.2015.1075139

Pishahang, M., Jovcic, S., Zolfani, S. H., Simic, V., & Görçün, Ö. F. (2023). MCDM-Based Wildfire Risk Assessment : A Case Study on the State of Arizona. https://doi.org/10.3390/fire6120449

Reynard, S. H. (2025). Analyzing the Impacts of Decentralized Applications on GIS Stakeholder Interests through the Lens of Web3 and Blockchain Technology. March. https://doi.org/10.13140/RG.2.2.32324.54409

Singh, A., Parizi, R. M., Zhang, Q., Choo, K. R., Dehghantanha, A., Thomas, I. B. M., Heights, Y., & States, U. (2020). Computers & Security Blockchain smart contracts formalization : Approaches and challenges to address vulnerabilities. Computers & Security, 88, 101654. https://doi.org/10.1016/j.cose.2019.101654

Stević, Ž. (2018). SS symmetry Application of MCDM Methods in Sustainability Engineering : A Literature Review 2008 – 2018. https://doi.org/10.3390/sym11030350

Xiao, T., Muhammad, A. M., Pan, X., Wang, Y., Guangming, H., & Tang, Z. (2022). Spatial distribution and risk identi fi cation of arsenic contamination in water and soil through GIS-based interpolation techniques in Jianghan Plain , Central China. October, 1–19. https://doi.org/10.3389/fenvs.2022.1001862

Yusuf, F., Cahyo, N., Hindarto, D., Informatika, P., & Nasional, U. (2025). Smart Contract Architecture for a Blockchain- Driven Multi Criteria DSS in Forest Fire Monitoring and Response. 9(3), 1146–1158. https://doi.org/10.33395/sinkron.v9i3.15009

Downloads


Crossmark Updates

How to Cite

Paays, E. A. R. ., Hindarto, D., & Sani, A. (2025). MCDM-based Fire Risk Mapping with Geospatial Visualization and Blockchain. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(4), 3289-3301. https://doi.org/10.33395/sinkron.v9i4.15436

Most read articles by the same author(s)

1 2 3 4 5 > >>