Comparative Analysis of LSTM, GRU, and Bi-LSTM Deep Learning Models for Time Series Cryptocurrency Price Forecasting

Authors

  • I Putu Bramasta Priadinata Informatika, Fakultas Teknologi dan Informatika, Institut Bisnis dan Teknologi Indonesia, Denpasar, Bali, Indonesia
  • I Gede Iwan Sudipa Informatika, Fakultas Teknologi dan Informatika, Institut Bisnis dan Teknologi Indonesia, Denpasar, Bali, Indonesia
  • Ni Putu Suci Meinarni Informatika, Fakultas Teknologi dan Informatika, Institut Bisnis dan Teknologi Indonesia, Denpasar, Bali, Indonesia
  • I Made Leo Radhitya Informatika, Fakultas Teknologi dan Informatika, Institut Bisnis dan Teknologi Indonesia, Denpasar, Bali, Indonesia
  • I Kadek Dwi Gandika Supartha Informatika, Fakultas Teknologi dan Informatika, Institut Bisnis dan Teknologi Indonesia, Denpasar, Bali, Indonesia

DOI:

10.33395/sinkron.v9i3.14795

Keywords:

Cryptocurrency, LSTM, GRU, Bi-LSTM, price prediction, time series

Abstract

Cryptocurrency is a highly volatile digital asset that requires accurate predictive methods. This study compares the performance of three deep learning architectures LSTM, GRU, and Bi-LSTM in forecasting the prices of Bitcoin (BTC), Ethereum (ETH), and Binance Coin (BNB) using univariate historical data. Evaluation was conducted through regression metrics (RMSE and MAPE) and classification of price movement into five categories, ranging from very bearish to very bullish, assessed using a confusion matrix. The results show that GRU performed best for BTC (RMSE 974.72, MAPE 1.18%), while Bi-LSTM outperformed others for ETH and BNB (RMSE 43.19 and 6.83; MAPE 1.16% and 1.08%) and achieved the highest classification accuracy (55% and 52%). However, overall classification accuracy remains low, reflecting the complexity of cryptocurrency price patterns. The study is limited by its univariate approach without incorporating external variables. Its contribution lies in combining regression and classification evaluation, and it recommends exploring multivariate and ensemble models in future research.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Alkahfi, C., Kurnia, A., & Saefuddin, A. (2024). Perbandingan Kinerja Model Berbasis RNN pada Peramalan Data Ekonomi dan Keuangan Indonesia. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(4), 1235–1243. https://doi.org/10.57152/malcom.v4i4.1415

Arwansyah, A., Suryani, S., SY, H., Usman, U., Ahyuna, A., & Alam, S. (2022). Time Series Forecasting Menggunakan Deep Gated Recurrent Units. Digital Transformation Technology, 4(1), 410–416. https://doi.org/10.47709/digitech.v4i1.4141

Bertino, E., Xiaorui Zhang, Xingming Sun, & Zhihua Xia. (2022). Advances in Artificial Intelligence and Security.

Dutta, A., Kumar, S., & Basu, M. (2020). A Gated Recurrent Unit Approach to Bitcoin Price Prediction. Journal of Risk and Financial Management, 13(2). https://doi.org/10.3390/jrfm13020023

Erlangga, S., Indwiarti, & Aditsania, A. (2023). Prediksi Harga Mata Uang Kripto Menggunakan LSTM dan MLR.

Hamayel, M. J., & Owda, A. Y. (2021). A Novel Cryptocurrency Price Prediction Model Using GRU, LSTM and bi-LSTM Machine Learning Algorithms. AI (Switzerland), 2(4), 477–496. https://doi.org/10.3390/ai2040030

Kong, Y., Wang, Z., Nie, Y., Zhou, T., Zohren, S., & Liang, Y. (2024). Unlocking the Power of LSTM for Long Term Time Series Forecasting.

Meri Aryati, N. W., Wiguna, I. K. A. G., Putri, N. W. S., Widiartha, I. K. K., & Ginantra, N. L. W. S. R. (2024). Komparasi Metode LSTM dan GRU dalam Memprediksi Harga Saham. JURNAL MEDIA INFORMATIKA BUDIDARMA, 8(2), 1131. https://doi.org/10.30865/mib.v8i2.7342

Ningsih, M. (2021). Prediksi Harga Saham Harian PT BTPN Syariah Tbk Menggunakan Model Arima dan Model Garch. Jurnal Ilmiah Ekonomi Islam, 7(03), 1573–1580. https://doi.org/10.29040/jiei.v7i3.2795

Novela Waroi, E., Setyanto, A., Kunci, K., & Laptop, H. (2024). Prediksi Harga Laptop Menggunakan Algoritma GRU dan BILSTM. Jurnal Sosial Dan Teknologi.

Pirani, M., Thakkar, P., Jivrani, P., Bohara, M. H., & Garg, D. (2022). A Comparative Analysis of ARIMA, GRU, LSTM and BiLSTM on Financial Time Series Forecasting. IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics, ICDCECE 2022. https://doi.org/10.1109/ICDCECE53908.2022.9793213

Rolando, B., & Izmuddin, I. (2024). Menimbang Manfaat dan Kerugian Investasi Saham dan Kripto Bagi Pelaku Pasar Indonesia (Vol. 1, Issue 6). Elektronik.

Saputra, E., Hutagalung, J. E., & Utami, D. K. (2022). Kajian Potensi Dan Resiko Keberadaaan Mata Uang Kripto Terhadap Perilaku Investor di Indonesia. Ekonomi, Keuangan, Investasi Dan Syariah (EKUITAS), 4(1), 242–249. https://doi.org/10.47065/ekuitas.v4i1.2128

Sudiatmika, I. P. G. A., Putra, I. M. A. W., & Artana, W. W. (2024). The Implementation of Gated Recurrent Unit (GRU) for Gold Price Prediction Using Yahoo Finance Data: A Case Study and Analysis. Brilliance: Research of Artificial Intelligence, 4(1), 176–184. https://doi.org/10.47709/brilliance.v4i1.3865

Yang, M., & Wang, J. (2021). Adaptability of Financial Time Series Prediction Based on BiLSTM. Procedia Computer Science, 199, 18–25. https://doi.org/10.1016/j.procs.2022.01.003

YURTSEVER, M. (2021). Gold Price Forecasting Using LSTM, Bi-LSTM and GRU. European Journal of Science and Technology. https://doi.org/10.31590/ejosat.959405

Downloads


Crossmark Updates

How to Cite

Priadinata, I. P. B., Sudipa, I. G. I. ., Meinarni, N. P. S., Radhitya, I. M. L., & Supartha, I. K. D. G. (2025). Comparative Analysis of LSTM, GRU, and Bi-LSTM Deep Learning Models for Time Series Cryptocurrency Price Forecasting. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(3), 1024-1035. https://doi.org/10.33395/sinkron.v9i3.14795

Most read articles by the same author(s)