Comparative Analysis of LSTM, GRU, and Bi-LSTM Deep Learning Models for Time Series Cryptocurrency Price Forecasting
DOI:
10.33395/sinkron.v9i3.14795Keywords:
Cryptocurrency, LSTM, GRU, Bi-LSTM, price prediction, time seriesAbstract
Cryptocurrency is a highly volatile digital asset that requires accurate predictive methods. This study compares the performance of three deep learning architectures LSTM, GRU, and Bi-LSTM in forecasting the prices of Bitcoin (BTC), Ethereum (ETH), and Binance Coin (BNB) using univariate historical data. Evaluation was conducted through regression metrics (RMSE and MAPE) and classification of price movement into five categories, ranging from very bearish to very bullish, assessed using a confusion matrix. The results show that GRU performed best for BTC (RMSE 974.72, MAPE 1.18%), while Bi-LSTM outperformed others for ETH and BNB (RMSE 43.19 and 6.83; MAPE 1.16% and 1.08%) and achieved the highest classification accuracy (55% and 52%). However, overall classification accuracy remains low, reflecting the complexity of cryptocurrency price patterns. The study is limited by its univariate approach without incorporating external variables. Its contribution lies in combining regression and classification evaluation, and it recommends exploring multivariate and ensemble models in future research.
Downloads
References
Alkahfi, C., Kurnia, A., & Saefuddin, A. (2024). Perbandingan Kinerja Model Berbasis RNN pada Peramalan Data Ekonomi dan Keuangan Indonesia. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(4), 1235–1243. https://doi.org/10.57152/malcom.v4i4.1415
Arwansyah, A., Suryani, S., SY, H., Usman, U., Ahyuna, A., & Alam, S. (2022). Time Series Forecasting Menggunakan Deep Gated Recurrent Units. Digital Transformation Technology, 4(1), 410–416. https://doi.org/10.47709/digitech.v4i1.4141
Bertino, E., Xiaorui Zhang, Xingming Sun, & Zhihua Xia. (2022). Advances in Artificial Intelligence and Security.
Dutta, A., Kumar, S., & Basu, M. (2020). A Gated Recurrent Unit Approach to Bitcoin Price Prediction. Journal of Risk and Financial Management, 13(2). https://doi.org/10.3390/jrfm13020023
Erlangga, S., Indwiarti, & Aditsania, A. (2023). Prediksi Harga Mata Uang Kripto Menggunakan LSTM dan MLR.
Hamayel, M. J., & Owda, A. Y. (2021). A Novel Cryptocurrency Price Prediction Model Using GRU, LSTM and bi-LSTM Machine Learning Algorithms. AI (Switzerland), 2(4), 477–496. https://doi.org/10.3390/ai2040030
Kong, Y., Wang, Z., Nie, Y., Zhou, T., Zohren, S., & Liang, Y. (2024). Unlocking the Power of LSTM for Long Term Time Series Forecasting.
Meri Aryati, N. W., Wiguna, I. K. A. G., Putri, N. W. S., Widiartha, I. K. K., & Ginantra, N. L. W. S. R. (2024). Komparasi Metode LSTM dan GRU dalam Memprediksi Harga Saham. JURNAL MEDIA INFORMATIKA BUDIDARMA, 8(2), 1131. https://doi.org/10.30865/mib.v8i2.7342
Ningsih, M. (2021). Prediksi Harga Saham Harian PT BTPN Syariah Tbk Menggunakan Model Arima dan Model Garch. Jurnal Ilmiah Ekonomi Islam, 7(03), 1573–1580. https://doi.org/10.29040/jiei.v7i3.2795
Novela Waroi, E., Setyanto, A., Kunci, K., & Laptop, H. (2024). Prediksi Harga Laptop Menggunakan Algoritma GRU dan BILSTM. Jurnal Sosial Dan Teknologi.
Pirani, M., Thakkar, P., Jivrani, P., Bohara, M. H., & Garg, D. (2022). A Comparative Analysis of ARIMA, GRU, LSTM and BiLSTM on Financial Time Series Forecasting. IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics, ICDCECE 2022. https://doi.org/10.1109/ICDCECE53908.2022.9793213
Rolando, B., & Izmuddin, I. (2024). Menimbang Manfaat dan Kerugian Investasi Saham dan Kripto Bagi Pelaku Pasar Indonesia (Vol. 1, Issue 6). Elektronik.
Saputra, E., Hutagalung, J. E., & Utami, D. K. (2022). Kajian Potensi Dan Resiko Keberadaaan Mata Uang Kripto Terhadap Perilaku Investor di Indonesia. Ekonomi, Keuangan, Investasi Dan Syariah (EKUITAS), 4(1), 242–249. https://doi.org/10.47065/ekuitas.v4i1.2128
Sudiatmika, I. P. G. A., Putra, I. M. A. W., & Artana, W. W. (2024). The Implementation of Gated Recurrent Unit (GRU) for Gold Price Prediction Using Yahoo Finance Data: A Case Study and Analysis. Brilliance: Research of Artificial Intelligence, 4(1), 176–184. https://doi.org/10.47709/brilliance.v4i1.3865
Yang, M., & Wang, J. (2021). Adaptability of Financial Time Series Prediction Based on BiLSTM. Procedia Computer Science, 199, 18–25. https://doi.org/10.1016/j.procs.2022.01.003
YURTSEVER, M. (2021). Gold Price Forecasting Using LSTM, Bi-LSTM and GRU. European Journal of Science and Technology. https://doi.org/10.31590/ejosat.959405
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2025 I Putu Bramasta Priadinata, I Gede Iwan Sudipa, Ni Putu Suci Meinarni, I Made Leo Radhitya, I Kadek Dwi Gandika Supartha

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.