Convolutional Neural Network Algorithm Implementation for Classifying Traditional Wood Carving Motifs of Patra Bali

Authors

  • I Dewa Gede Surya Widyatama Informatika, Fakultas Teknologi dan Informatika, Institut Bisnis dan Teknologi Indonesia, Denpasar, Bali, Indonesia
  • I Gede Iwan Sudipa Institut Bisnis dan Teknologi Indonesia https://orcid.org/0000-0002-4278-9068
  • Yuri Prima Fittryani Informatika, Fakultas Teknologi dan Informatika, Institut Bisnis dan Teknologi Indonesia, Denpasar, Bali, Indonesia
  • Dewa Ayu Putri Wulandari Informatika, Fakultas Teknologi dan Informatika, Institut Bisnis dan Teknologi Indonesia, Denpasar, Bali, Indonesia
  • I Nyoman Jayanegara Informatika, Fakultas Teknologi dan Informatika, Institut Bisnis dan Teknologi Indonesia, Denpasar, Bali, Indonesia

DOI:

10.33395/sinkron.v9i3.14841

Keywords:

Patra Bali, Deep Learning, Convolutional Neural Network (CNN), Image Processing, Image Classification

Abstract

This research develops an automatic classification system to recognize Balinese Patra carving motifs using deep learning method based on Convolutional Neural Network (CNN). The data used are images of Cina Patra, Mesir Patra, Punggel Patra, and Sari Patra motifs, which have gone through preprocessing stages such as cropping, resizing, and augmentation in the form of flip and rotation to increase data variation. Three pre-trained CNN models were used in testing, namely DenseNet169, InceptionResNetV2, and MobileNetV2. The training process was performed with Adam optimization, batch size 32, and 100 epochs. Model performance evaluation was performed using accuracy and confusion matrix metrics. The results show that all three models were able to achieve 100% accuracy on the test data, with MobileNetV2 recording the lowest loss of 0.75%, followed by DenseNet169 (1.14%) and InceptionResNetV2 (1.18%). Based on the confusion matrix, all motifs were recognized very well, although there was a slight misclassification of the Patra Sari motif by the InceptionResNetV2 model. These findings prove that CNN is effectively used in the recognition of traditional carving motifs and has the potential to support cultural preservation through interactive visual technology.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Akbar, W. F., Wibowo, N. C., Kom, S., Kom, M., & Yudha, D. S. (2025). Implementasi Transfer Learning Model DenseNet169 Untuk Klasifikasi Citra Jenis Sampah. 11(4), 495–506.

Fan, C., Chen, M., Wang, X., Wang, J., & Huang, B. (2021). A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Frontiers in Energy Research, 9(March), 1–17. https://doi.org/10.3389/fenrg.2021.652801

Gabriela Winarto, E., & Lawi, A. (2021). Implementasi Arsitektur Inception Resnet-V2 untuk Klasifikasi Kualitas Biji Kakao. Konferensi Nasional Ilmu Komputer (KONIK) 2021 , 132, 1–6.

Gulzar, Y. (2023). Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15031906

I Gusti Ngurah, I. G. N. A. C. P., Putra, I. K. A. A., Dwidasmara, I. B. G., Widiartha, M., ER, N. A. S., & Suputra, I. P. G. H. (2023). Implementasi Metode Convolutional Neural Network Pada Pengenalan Aksara Bali Berbasis Game Edukasi. SINTECH (Science and Information Technology) Journal, 6(1), 1–15. https://doi.org/10.31598/sintechjournal.v6i1.1298

Kadyanan, I. G. A. G. A., ER, N. A. S., Dwidasmara, I. B. G., Adnyana, I. K. D., Pratama, I. K. W., Wiradhanta, N. M. A., & Mahayasa, I. A. G. A. (2025). Balinese traditional building architecture dataset. Data in Brief, 60. https://doi.org/10.1016/j.dib.2025.111465

Kusnadi, K., & Atmaja, D. A. S. P. (2025). Implementation of Grayscale Image Transformation and Histogram Equalization Methods in Digital Image Processing. Krisnadana Journal, 4(2), 111–121. https://doi.org/10.58982/krisnadana.v4i2.739

Liu, X., Zheng, J., Yu, L., Hao, P., Chen, B., Xin, Q., Fu, H., & Gong, P. (2021). Annual dynamic dataset of global cropping intensity from 2001 to 2019. Scientific Data, 8(1), 1–9. https://doi.org/10.1038/s41597-021-01065-9

Nugraha, I. K. A. R., Ginantra, N. L. W. S. R., Wiguna, I. K. A. G., & Indrawan, I. G. A. (2024). CNN-Based Image Processing for Recognizing Balinese Characters on Palm Leaves. 2024 9th International Conference on Informatics and Computing, ICIC 2024, 1–6. https://doi.org/10.1109/ICIC64337.2024.10957575

Reyad, M., Sarhan, A. M., & Arafa, M. (2023). A modified Adam algorithm for deep neural network optimization. Neural Computing and Applications, 35(23), 17095–17112. https://doi.org/10.1007/s00521-023-08568-z

Sandhopi, Lukman Zaman P.C.S.W, & Yosi Kristian. (2020). Identifikasi Motif Jepara pada Ukiran dengan Memanfaatkan Convolutional Neural Network. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 9(4), 403–413. https://doi.org/10.22146/jnteti.v9i4.541

Semma, A., Lazrak, S., Hannad, Y., Boukhani, M., & El Kettani, Y. (2021). WRITER IDENTIFICATION: The EFFECT of IMAGE RESIZING on CNN PERFORMANCE. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 46(4/W5-2021), 501–507. https://doi.org/10.5194/isprs-Archives-XLVI-4-W5-2021-501-2021

Sudipa, I. G. I., Azdy, R. A., Arfiani, I., & Setiohardjo, N. M. (2024). Leveraging K-Nearest Neighbors for Enhanced Fruit Classification and Quality Assessment. Indonesian Journal of Data and Science, 5(1), 30–36. https://doi.org/10.56705/ijodas.v5i1.125

Udayana, I. P. A. E. D., Kherismawati, N. P. E., & Sudipa, I. G. I. (2022). Detection of Student Drowsiness Using Ensemble Regression Trees in Online Learning During a COVID-19 Pandemic. Telematika: Jurnal Informatika Dan Teknologi Informasi, 19(2), 229–244.

Xu, M., Yoon, S., Fuentes, A., & Park, D. S. (2023). A Comprehensive Survey of Image Augmentation Techniques for Deep Learning. Pattern Recognition, 137. https://doi.org/10.1016/j.patcog.2023.109347

Downloads


Crossmark Updates

How to Cite

Widyatama, I. D. G. S. ., Sudipa, I. G. I., Fittryani, Y. P. ., Wulandari, D. A. P. ., & Jayanegara, I. N. (2025). Convolutional Neural Network Algorithm Implementation for Classifying Traditional Wood Carving Motifs of Patra Bali. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(3), 1084-1093. https://doi.org/10.33395/sinkron.v9i3.14841

Most read articles by the same author(s)

1 2 > >>