Sentiment Analysis of Roblox Game Reviews Using Support Vector Machine Method

Authors

  • Ni Kadek Feby Puspita Dewi Institut Bisnis dan Teknologi Indonesia, Bali, Indonesia
  • I Gede Iwan Sudipa Institut Bisnis dan Teknologi Indonesia, Bali, Indonesia
  • I Wayan Sunarya Institut Bisnis dan Teknologi Indonesia, Bali, Indonesia
  • Ni Wayan Jeri Kusuma Dewi Institut Bisnis dan Teknologi Indonesia, Bali, Indonesia
  • Aniek Suryanti Kusuma Institut Bisnis dan Teknologi Indonesia, Bali, Indonesia

DOI:

10.33395/sinkron.v9i4.15272

Keywords:

Sentiment Analysis, Support Vector Machine, Lexicon InSet, Google Play Store, Roblox

Abstract

The development of digital technology has driven changes in entertainment consumption patterns, especially among the younger generation. Roblox has become one of the most popular online gaming platforms, with a wide range of user opinions recorded on Google Play Store. This study aims to classify the sentiment of Roblox user reviews (positive, negative, neutral) and evaluate the performance of the Support Vector Machine (SVM) algorithm with TF-IDF weighting and automatic labeling using Lexicon InSet. Data was obtained by crawling 10,000 reviews during the period of April 2–May 23, 2025, and after the preprocessing stage, 8,950 data remained for analysis. The classification results show that the sentiment distribution consists of 41.3% positive (3,703 reviews), 41.8% neutral (3,739 reviews), and 16.8% negative (1,507 reviews). Model evaluation using a confusion matrix produced high performance with 87.03% accuracy, 87.29% precision, 87.03% recall, and an F1-score of 86.67%. WordCloud visualization shows that positive reviews emphasize creativity and interactive features, while negative reviews are dominated by technical complaints such as lag and errors. These findings prove that the combination of SVM, TF-IDF, and Lexicon InSet is effective in sentiment analysis and provides valuable input for developers to improve application quality and user protection. Further research is recommended to adopt a hybrid approach based on deep learning and aspect-based sentiment analysis to generate more insights.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Agustian, C., Hananto, A. L., Nurapriani, F., & Huda, B. (2025). Analysis of eFootball game user sentiment using the support vector machine (SVM) method. Journal of Artificial Intelligence and Engineering Applications, 4(3), 2808–4519. https://ioinformatic.org/

Aini, W. R., Sudipa, I. G. I., Sandana, I. P. D., Putra, D. M. D. U., & Indrawan, I. G. A. (2024). IDENTIFYING FAKE ACCOUNTS IN SOCIAL MEDIA COMMERCIAL VIDEOS USING SUPPORT VECTOR MACHINE METHOD. Proceeding International Conference on Information Technology, Multimedia, Architecture, Design, and E-Business, 3, 79–86.

Al-Husna, G. S., Asmarajati, D., Ihsannuddin, I. A., & Mahmudati, R. (2024). Perbandingan Metode Naïve Bayes Dan Support Vector Machine Untuk Analisis Sentimen Pada Ulasan Pengguna Aplikasi Linkedin. STORAGE: Jurnal Ilmiah Teknik Dan Ilmu Komputer, 3(2), 139–144. https://doi.org/10.55123/storage.v3i2.3602

Alhasan, K., & Alhasan, K. (2023). Roblox in higher education: opportunities, challenges, and future directions for multimedia learning. International Journal of Emerging Technologies in Learning (IJET), 18(19), 32–46. https://doi.org/https://doi.org/10.3991/ijet.v18i19.43133

Ansyah, F., & Suryono, R. R. (2025). Sentiment Classification of Indonesian-Language Roblox Reviews Using IndoBERT with SMOTE Optimization. Journal of Applied Informatics and Computing, 9(4), 1868–1877. https://doi.org/https://doi.org/10.30871/jaic.v9i4.10155

Asri, Y., Kuswardani, D., Suliyanti, W. N., Manullang, Y. O., & Ansyari, A. R. (2025). Sentiment analysis based on Indonesian language lexicon and IndoBERT on user reviews PLN mobile application. Indonesian Journal of Electrical Engineering and Computer Science, 38(1), 677–668. https://doi.org/10.11591/ijeecs.v38.i1.pp677-688

Dewi, Y. R., Saraswati, N. W. S., Monny, M. O. E., Sarasvananda, I. B. G., & Andika, I. G. (2025). Sentiment Analysis of the Relocation of the National Capital on Social Media X. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 9(2), 625–636.

Fathoni, M. F. N., Puspaningrum, E. Y., & Sihananto, A. N. (2024). Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM. Modem : Jurnal Informatika Dan Sains Teknologi., 2(3), 62–76. https://doi.org/10.62951/modem.v2i3.112

Firda, H., Putra, P., Oktadini, N. R., Sevtiyuni, P. E., & Meiriza, A. (2025). Comparison of Rating-based and Inset Lexicon-based Labeling in Sentiment Analysis using SVM (Case Study: GoBiz Application Reviews on Google Play Store). Sistemasi, 14(2), 516. https://doi.org/10.32520/stmsi.v14i2.4795

Ghaffar, S. A., & Setiawan, W. C. (2024). Metaverse Dynamics: Predictive Modeling of Roblox Stock Prices using Time Series Analysis and Machine Learning. International Journal Research on Metaverse, 1(1), 77–93. https://doi.org/https://doi.org/10.47738/ijrm.v1i1.6

Iriananda, S. W., Budiawan, R. W., Rahman, A. Y., & Istiadi, I. (2024). Optimasi Klasifikasi Sentimen Komentar Pengguna Game Bergerak Menggunakan Svm, Grid Search Dan Kombinasi N-Gram. Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(4), 743–752. https://doi.org/10.25126/jtiik.1148244

Ishar, dkk. (2024). ANALISIS SENTIMEN KOMENTAR PENGGUNA TERHADAP GAME MOBA LOKAPALA DI GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE dan menawan yang dapat dimainkan secara dapat dimainkan secara bersamaan oleh jutaan pemain di Indonesia bahkan di seluruh du. 4(2), 1–9.

Mr. Aldiansyah, P., & Fuad, N. H. (2024). Comparison of the Naïve Bayes Method and Support Vector Machine on Twitter Sentiment Analysis. SMATIKA J. STIKI Inform. J, 10(2), 71–76.

Mustopa, A., Pratama, E. B., Hendini, A., & Risdiansyah, D. (2020). Analysis of user reviews for the pedulilindungi application on google play using the support vector machine and naive bayes algorithm based on particle swarm optimization. 2020 Fifth International Conference on Informatics and Computing (ICIC), 1–7. https://doi.org/https://doi.org/10.1109/ICIC50835.2020.9288655

Natarajan, T., Pragha, P., Dhalmahapatra, K., & Veera Raghavan, D. R. (2025). Unveiling metaverse sentiments using machine learning approaches. Kybernetes, 54(8), 4114–4137. https://doi.org/https://doi.org/10.1108/K-11-2023-2268

Oh, Y. K., Yi, J., & Kim, J. (2024). What enhances or worsens the user-generated metaverse experience? An application of BERTopic to Roblox user eWOM. Internet Research, 34(5), 1800–1817. https://doi.org/https://doi.org/10.1108/INTR-03-2022-0178

Priadinata, I. P. B., Sudipa, I. G. I., Meinarni, N. P. S., Radhitya, I. M. L., & Supartha, I. K. D. G. (2025). Comparative Analysis of LSTM, GRU, and Bi-LSTM Deep Learning Models for Time Series Cryptocurrency Price Forecasting. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 9(3), 1024–1035. https://doi.org/https://doi.org/10.33395/sinkron.v9i3.14795

Riskawati, R., Fatihanursari, F., Iin, I., & Rizki Rinaldi, A. (2024). Penerapan Metode Naïve Bayes Classifier Pada Analisis Sentimen Aplikasi Gopay. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 346–353. https://doi.org/10.36040/jati.v8i1.8699

Safrudin, M., Martanto, M., & Hayati, U. (2024). Perbandingan Kinerja Naïve Bayes Dan Support Vector Machine Untuk Klasifikasi Sentimen Ulasan Game Genshin Impact. JATI (Jurnal Mahasiswa Teknik Informatika), 8(3), 3182–3188. https://doi.org/10.36040/jati.v8i3.8415

Sakshi, Kumar, A., Shukla, R. P., & Jain, S. (2024). Machine Learning Approaches for Investing Strategies in Stock Market BT - Intelligent Systems Design and Applications (A. Abraham, A. Bajaj, T. Hanne, & T.-P. Hong (eds.); pp. 32–44). Springer Nature Switzerland.

Sapitri, I. A. (2023). Pengklasifikasian Sentimen Ulasan Aplikasi Whatsapp Pada Google Play Store Menggunakan Support Vector Machine. Jurnal TEKINKOM, 6(1), 1–7. https://doi.org/10.37600/tekinkom.v6i1.773

Tinaliah. (2022). Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(4), 3436–3442. https://doi.org/10.35957/jatisi.v9i4.3586

Utami, M. A. A. T., Silvianti, P., & Masjkur, M. (2023). Algoritme Support Vector Machine untuk Analisis Sentimen Berbasis Aspek Ulasan Game Online Mobile Legends: Bang-Bang. Xplore: Journal of Statistics, 12(1), 63–77. https://doi.org/10.29244/xplore.v12i1.1064

Venkatakrishnan, S., Kaushik, A., & Verma, J. K. (2020). Sentiment analysis on google play store data using deep learning. In Applications of Machine Learning (pp. 15–30). Springer. https://doi.org/https://doi.org/10.1007/978-981-15-3357-0_2

Yuliastika, T., & Fitriana, P. (2023). Motif Penggunaan Game Online Roblox pada Anak Usia Sekolah. Jurnal Ilmiah Wahana Pendidikan, Mei, 9(9), 364–371. https://doi.org/10.5281/zenodo.7953027

Downloads


Crossmark Updates

How to Cite

Dewi, N. K. F. P. ., Sudipa, I. G. I. ., Sunarya, I. W. ., Kusuma Dewi, N. W. J. ., & Kusuma, A. S. . (2025). Sentiment Analysis of Roblox Game Reviews Using Support Vector Machine Method. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(4), 1863-1876. https://doi.org/10.33395/sinkron.v9i4.15272

Most read articles by the same author(s)

1 2 > >>