SVM-Based Pediatric Disease Classification Model from the Balinese Lontar Usada Rare Manuscript
DOI:
10.33395/sinkron.v10i1.15508Keywords:
Classification, Lontar Usada Rare, Balinese Traditional Medicine, Support Vector Machine, TF-IDFAbstract
Lontar Usada Rare is a traditional Balinese manuscript containing pediatric medical knowledge based on local wisdom, yet its narrative format limits accessibility and utilization in modern contexts, while its physical fragility threatens long-term preservation. This study aims to develop a pediatric disease classification model using a Support Vector Machine (SVM) combined with Term Frequency–Inverse Document Frequency (TF-IDF) weighting to support the digitalization of Balinese traditional medicine. A total of 422 data samples were collected through expert interviews and manuscript analysis, covering symptoms, disease types, herbal ingredients, and treatment procedures. The research stages included text preprocessing (cleansing, tokenizing, stopword removal, stemming), manual labeling into 35 disease classes, and model evaluation using five train–test split ratios (80:20 to 60:40) with variations of the complexity parameter C (0.5, 1, 10, 100, 1000). The best performance was achieved using C=10 with an 80:20 ratio, resulting in 87.06% accuracy, 91.55% precision, 87.06% recall, and an F1-score of 87.96%. Confusion matrix analysis showed strong classification performance for most classes, although minority classes with overlapping symptoms exhibited misclassification. Overall, the TF-IDF and linear SVM combination effectively classifies pediatric disease symptoms from Lontar Usada Rare and contributes to the preservation and digital transformation of Balinese traditional medical knowledge for potential modern healthcare applications.
Downloads
References
Abdalla, H. B. (2022). A Brief Survey On Big Data: Technologies, Terminologies And Data-Intensive Applications. Journal Of Big Data, 9(1). Https://Doi.Org/10.1186/S40537-022-00659-3
Adnyana, P. E. S. (2020). Lontar Usada Rare : Memahami Kearifan Lokal Tradisional Bali Dalam Mendiagnosa Gejala Penyakit Anak. 3(2), 163–173.
Adnyana, P. E. S. (2021). Empirisme Penggunaan Tumbuhan Pada Pengobatan Tradisional Bali: Lontar Taru Pramana Dalam Konstruksi Filsafat Ilmu. Sanjiwani: Jurnal Filsafat, 12(1), 64. Https://Doi.Org/10.25078/Sjf.V12i1.2059
Amaya-Tejera, N., Gamarra, M., Vélez, J. I., & Zurek, E. (2024). A Distance-Based Kernel For Classification Via Support Vector Machines. Frontiers In Artificial Intelligence, 7. Https://Doi.Org/10.3389/Frai.2024.1287875
Balipost.Com. (2024). Disbud Badung Lestarikan Lontar Dengan Digitalisasi. Https://Www.Balipost.Com/News/2024/02/08/387044/Disbud-Badung-Lestarikan-Lontar-Dengan...Html
Brin.Go.Id. (2025). Inovasi Digital Selamatkan Warisan Budaya Dan Bahasa Daerah. Https://Www.Brin.Go.Id/News/122398/Inovasi-Digital-Selamatkan-Warisan-Budaya-Dan-Bahasa-Daerah
Chen, W., Gong, Y., Xu, C., Hu, H., Yao, B., Wei, Z., Fan, Z., Hu, X., Zhou, B., Cheng, B., Jiang, D., & Duan, N. (2022). Contextual Fine-To-Coarse Distillation For Coarse-Grained Response Selection In Open-Domain Conversations. Proceedings Of The Annual Meeting Of The Association For Computational Linguistics, 1, 4865–4877. Https://Doi.Org/10.18653/V1/2022.Acl-Long.334
Dag, H. (2020). The Impact Of Text Preprocessing On The Prediction Of Review Ratings. May. Https://Doi.Org/10.3906/Elk-1907-46
Daniel, U. (2022). Klasifikasi Tanaman Hias Berdasarkan Tekstur Daun Menggunakan Metode Svm Dan Fitur Glcm. 3(2), 121–127.
Das, S., Pandit, R., & Naskar, S. K. (2020). A Rule Based Lightweight Bengali Stemmer. 400–408.
Dewanti, T. R., Prathivi, R., & Susanto. (2025). Implementasi Metode Svm Untuk Klasifikasi Penyakit Stunting Bayi. 101–106.
Fan, Q., Liu, S., Zhao, C., & Li, S. (2023). An Instance- And Label-Based Feature Selection Method In Classification Tasks. Information (Switzerland), 14(10), 1–14. Https://Doi.Org/10.3390/Info14100532
Gastaldi, J. L., Terilla, J., Malagutti, L., Dusell, B., Vieira, T., & Cotterell, R. (2025). The Foundations Of Tokenization: Statistical And Computational Concerns. 1–18. Http://Arxiv.Org/Abs/2407.11606
Goodnewsfromindonesia.Id. (2025). Digitalisasi Lontar Bali Sebagai Upaya Menjaga Warisan Leluhur. Https://Www.Goodnewsfromindonesia.Id/2021/07/19/Digitalisasi-Lontar-Bali-Sebagai-Upaya-Menjaga-Warisan-Leluhur
Grandini, M., Bagli, E., & Visani, G. (2020). Metrics For Multi-Class Classification: An Overview. 1–17. Http://Arxiv.Org/Abs/2008.05756
Guido, R., Ferrisi, S., Lofaro, D., & Conforti, D. (2024). An Overview On The Advancements Of Support Vector Machine Models In Healthcare Applications: A Review. Information (Switzerland), 15(4). Https://Doi.Org/10.3390/Info15040235
Hartono, E. F., Rachmat, N., Multi, U., Palembang, D., & Informatika, J. (2022). Klasifikasi Jenis Plastik Hdpe , Ldpe , Dan Ps Berdasarkan Tekstur Menggunakan Metode Support Vector Machine. 9(2), 1403–1412.
Hidayat, S., Napitupulu, H., & Gusriani, N. (2024). Penerapan Model Support Vector Machine Pada Kasus Klasifikasi Teks Berdasarkan Tujuan Sdgs Ke Tiga, Empat, Dan Enam. 6(2), 28–37.
Kunilovskaya, M. (2021). Text Preprocessing And Its Implications In A Digital Humanities Project. 85–93.
Nguyen, Q. H., Ly, H. B., Ho, L. S., Al-Ansari, N., Van Le, H., Tran, V. Q., Prakash, I., & Pham, B. T. (2021). Influence Of Data Splitting On Performance Of Machine Learning Models In Prediction Of Shear Strength Of Soil. Mathematical Problems In Engineering, 2021. Https://Doi.Org/10.1155/2021/4832864
Peraturan Menteri Kesehatan Nomor 37 Tahun 2017 Tentang Pelayanan Kesehatan Tradisional Integrasi, Pub. L. No. 1109/Menkes/Per/Ix/2007 (2017).
Pradana, A. W., & Hayaty, M. (2019). The Effect Of Stemming And Removal Of Stopwords On The Accuracy Of Sentiment Analysis On Indonesian-Language Texts. 4(3).
Putra Asana, I. M. D., & Della Tirta Yanti, N. P. (2023). Sistem Klasifikasi Pengajuan Kredit Dengan Metode Support Vector Machine ( Svm ). 06(02), 123–133.
Rácz, A., Bajusz, D., & Héberger, K. (2021). Effect Of Dataset Size And Train/Test Split Ratios In Qsar/Qspr Multiclass Classification. Molecules, 26(4), 1–16. Https://Doi.Org/10.3390/Molecules26041111
Rahayu, S., & Yamasari, Y. (2024). Klasifikasi Penyakit Stroke Dengan Metode Support Vector Machine (Svm). Journal Of Informatics And Computer Science (Jinacs), 5(03), 440–446. Https://Doi.Org/10.26740/Jinacs.V5n03.P440-446
Ropikoh, I. A., Abdulhakim, R., Enri, U., & Sulistiyowati, N. (2021). Penerapan Algoritma Support Vector Machine ( Svm ) Untuk Klasifikasi Berita Hoax Covid-19. 5(1).
Saputra, N. A., Aeni, K., & Saraswati, N. M. (2024). Indonesian Hate Speech Text Classification Using Improved K-Nearest Neighbor With Tf-Idf- Icsρf. 11(1), 21–30. Https://Doi.Org/10.15294/Sji.V11i1.48085
Sarica, I. S., & Luo, J. (2021). Stopwords In Technical Language Processing. 1–13. Https://Doi.Org/10.1371/Journal.Pone.0254937
Sathyanarayanan, S., & Roopashri Tantri, B. (2024). Confusion Matrix-Based Performance Evaluation Metrics. African Journal Of Biomedical Research, 27(4), 4023–4031. Https://Doi.Org/10.53555/Ajbr.V27i4s.4345
Sheridan, P., Ahmed, Z., & Farooque, A. A. (2025). A Fisher’s Exact Test Justification Of The Tf–Idf Term-Weighting Scheme. The American Statistician, 1–11. Https://Doi.Org/10.1080/00031305.2025.2539241
Uptd Gedong Kirtya. (2016). Lontar Usada Rare.
Uu Nomor 5 Tahun 2017 Tentang Pemajuan Kebudayaan, Pub. L. No. Uu Nomor 5 Tahun 2017 (2017).
Verdikha, N. A., & Yulianto, F. (2025). Klasifikasi Ulasan Aplikasi Sirekap 2024 Dengan Ekstraksi Fitur Word2vec Dan Metode Support Vector Machine ( Svm ). 9(2), 3013–3019.
Wabula, Y., Latief, A. D., & Zainuddin, H. (2023). Next Sentence Prediction : The Impact Of Preprocessing Techniques In Deep Learning. 2023 International Conference On Computer, Control, Informatics And Its Applications (Ic3ina), October, 274–278. Https://Doi.Org/10.1109/Ic3ina60834.2023.10285805
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2026 I Gusti Made Ngurah Ari Bhawanaputra, I Gede Iwan Sudipa, Ni Putu Suci Meinarni, I Gusti Ayu Agung Mas Aristamy, Indra Pratistha

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Moraref
PKP Index
Indonesia OneSearch
OCLC Worldcat
Index Copernicus
Scilit




















